Cargando…
Spiking Neural Network with Linear Computational Complexity for Waveform Analysis in Amperometry
The paper describes the architecture of a Spiking Neural Network (SNN) for time waveform analyses using edge computing. The network model was based on the principles of preprocessing signals in the diencephalon and using tonic spiking and inhibition-induced spiking models typical for the thalamus ar...
Autores principales: | Szczęsny, Szymon, Huderek, Damian, Przyborowski, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125990/ https://www.ncbi.nlm.nih.gov/pubmed/34068538 http://dx.doi.org/10.3390/s21093276 |
Ejemplares similares
-
Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities
por: Pietrzak, Paweł, et al.
Publicado: (2023) -
Spike Sorting by Joint Probabilistic Modeling of Neural Spike Trains and Waveforms
por: Matthews, Brett A., et al.
Publicado: (2014) -
Mediated amperometry as a prospective method for the investigation of electroporation
por: Simonis, Povilas, et al.
Publicado: (2020) -
Determination of Phenolic Acids in Sugarcane Vinasse by HPLC with Pulse Amperometry
por: Freitas, P. V., et al.
Publicado: (2018) -
Rapid exocytosis kinetics measured by amperometry within volcano microelectrodes
por: Maïno, Nicolas, et al.
Publicado: (2023)