Cargando…
A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension...
Autores principales: | Chiu, Fang-Ying, Le, Nguyen Quoc Khanh, Chen, Cheng-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126019/ https://www.ncbi.nlm.nih.gov/pubmed/34068528 http://dx.doi.org/10.3390/jcm10092030 |
Ejemplares similares
-
The Effect of Heterogenous Subregions in Glioblastomas on Survival
Stratification: A Radiomics Analysis Using the Multimodality MRI
por: Yin, Lulu, et al.
Publicado: (2021) -
Machine Learning Based on a Multiparametric and Multiregional Radiomics Signature Predicts Radiotherapeutic Response in Patients with Glioblastoma
por: Pan, Zi-Qi, et al.
Publicado: (2020) -
Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas
por: Kha, Quang-Hien, et al.
Publicado: (2021) -
Repeatability of Multiparametric Prostate MRI Radiomics Features
por: Schwier, Michael, et al.
Publicado: (2019) -
Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2021)