Cargando…
Toward an Automatic Quality Assessment of Voice-Based Telemedicine Consultations: A Deep Learning Approach
Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evalua...
Autores principales: | Habib, Maria, Faris, Mohammad, Qaddoura, Raneem, Alomari, Manal, Alomari, Alaa, Faris, Hossam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126050/ https://www.ncbi.nlm.nih.gov/pubmed/34068602 http://dx.doi.org/10.3390/s21093279 |
Ejemplares similares
-
Automatic symptoms identification from a massive volume of unstructured medical consultations using deep neural and BERT models
por: Faris, Hossam, et al.
Publicado: (2022) -
Specialty detection in the context of telemedicine in a highly imbalanced multi-class distribution
por: Alomari, Alaa, et al.
Publicado: (2023) -
A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning
por: Qaddoura, Raneem, et al.
Publicado: (2021) -
Antibiotic Prescribing Patterns for Outpatient Pediatrics at a Private Hospital in Abu Dhabi: A Clinical Audit Study
por: El-Dahiyat, Faris, et al.
Publicado: (2022) -
Iktishaf+: A Big Data Tool with Automatic Labeling for Road Traffic Social Sensing and Event Detection Using Distributed Machine Learning
por: Alomari, Ebtesam, et al.
Publicado: (2021)