Cargando…
AFCM-LSMA: New intelligent model based on Lévy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images
PROBLEM: A worldwide challenge is to provide medical resources required for COVID-19 detection. They must be effective tools for fast detection and diagnose of the virus using a large number of tests; besides, they should be low-cost developments. While a chest X-ray scan is a powerful candidate too...
Autores principales: | Anter, Ahmed M., Oliva, Diego, Thakare, Anuradha, Zhang, Zhiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126092/ http://dx.doi.org/10.1016/j.aei.2021.101317 |
Ejemplares similares
-
Mutational Slime Mould Algorithm for Gene Selection
por: Qiu, Feng, et al.
Publicado: (2022) -
Advances in Physarum machines: sensing and computing with Slime mould
por: Adamatzky, Andrew
Publicado: (2016) -
Electron Microscopy of Solitary and Aggregated Slime Mould Cells
por: Mercer, E. H., et al.
Publicado: (1960) -
On hybrid circuits exploiting thermistive properties of slime mould
por: Walter, Xavier Alexis, et al.
Publicado: (2016) -
A Modified Slime Mould Algorithm for Global Optimization
por: Tang, An-Di, et al.
Publicado: (2021)