Cargando…
Deep Supervised Residual Dense Network for Underwater Image Enhancement
Underwater images are important carriers and forms of underwater information, playing a vital role in exploring and utilizing marine resources. However, underwater images have characteristics of low contrast and blurred details because of the absorption and scattering of light. In recent years, deep...
Autores principales: | Han, Yanling, Huang, Lihua, Hong, Zhonghua, Cao, Shouqi, Zhang, Yun, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126201/ https://www.ncbi.nlm.nih.gov/pubmed/34068741 http://dx.doi.org/10.3390/s21093289 |
Ejemplares similares
-
DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device
por: Qian, Jin, et al.
Publicado: (2023) -
Deep learning with self-supervision and uncertainty regularization to count fish in underwater images
por: Tarling, Penny, et al.
Publicado: (2022) -
Dynamic Residual Dense Network for Image Denoising
por: Song, Yuda, et al.
Publicado: (2019) -
A Novel Residual Dense Pyramid Network for Image Dehazing
por: Yin, Shibai, et al.
Publicado: (2019) -
RDASNet: Image Denoising via a Residual Dense Attention Similarity Network
por: Tao, Haowu, et al.
Publicado: (2023)