Cargando…

The biomechanical basis of biased epithelial tube elongation in lung and kidney development

During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Conrad, Lisa, Runser, Steve Vincent Maurice, Fernando Gómez, Harold, Lang, Christine Michaela, Dumond, Mathilde Sabine, Sapala, Aleksandra, Schaumann, Laura, Michos, Odyssé, Vetter, Roman, Iber, Dagmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126414/
https://www.ncbi.nlm.nih.gov/pubmed/33946098
http://dx.doi.org/10.1242/dev.194209
Descripción
Sumario:During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated ‘The people behind the papers’ interview.