Cargando…
Expert-Level Intracranial Electroencephalogram Ictal Pattern Detection by a Deep Learning Neural Network
Background: Decision-making in epilepsy surgery is strongly connected to the interpretation of the intracranial EEG (iEEG). Although deep learning approaches have demonstrated efficiency in processing extracranial EEG, few studies have addressed iEEG seizure detection, in part due to the small numbe...
Autores principales: | Constantino, Alexander C., Sisterson, Nathaniel D., Zaher, Naoir, Urban, Alexandra, Richardson, R. Mark, Kokkinos, Vasileios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126697/ https://www.ncbi.nlm.nih.gov/pubmed/34012415 http://dx.doi.org/10.3389/fneur.2021.603868 |
Ejemplares similares
-
Ictal Onset Signatures Predict Favorable Outcomes of Laser Thermal Ablation for Mesial Temporal Lobe Epilepsy
por: Zaher, Naoir, et al.
Publicado: (2020) -
Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series
por: Sisterson, Nathaniel D, et al.
Publicado: (2022) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Rational Approach to Understanding and Evaluating Responsive Neurostimulation
por: Sisterson, Nathaniel D., et al.
Publicado: (2020) -
Invasive Intracranial Electroencephalogram (EEG) Monitoring for Epilepsy in the Pediatric Patient With a Shunt
por: El Shatanofy, Muhammad, et al.
Publicado: (2023)