Cargando…

Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of me...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Xiaoyue, Ouyang, Wei, Jeong, Hyoyoung, Kim, Jin-Tae, Tzaveils, Andreas, Mirzazadeh, Ali, Wu, Changsheng, Lee, Jong Yoon, Keller, Matthew, Mummidisetty, Chaithanya K., Patel, Manish, Shawen, Nicholas, Huang, Joy, Chen, Hope, Ravi, Sowmya, Chang, Jan-Kai, Lee, KunHyuck, Wu, Yixin, Lie, Ferrona, Kang, Youn J., Kim, Jong Uk, Chamorro, Leonardo P., Banks, Anthony R., Bharat, Ankit, Jayaraman, Arun, Xu, Shuai, Rogers, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126790/
https://www.ncbi.nlm.nih.gov/pubmed/33893178
http://dx.doi.org/10.1073/pnas.2026610118
_version_ 1783693835183849472
author Ni, Xiaoyue
Ouyang, Wei
Jeong, Hyoyoung
Kim, Jin-Tae
Tzaveils, Andreas
Mirzazadeh, Ali
Wu, Changsheng
Lee, Jong Yoon
Keller, Matthew
Mummidisetty, Chaithanya K.
Patel, Manish
Shawen, Nicholas
Huang, Joy
Chen, Hope
Ravi, Sowmya
Chang, Jan-Kai
Lee, KunHyuck
Wu, Yixin
Lie, Ferrona
Kang, Youn J.
Kim, Jong Uk
Chamorro, Leonardo P.
Banks, Anthony R.
Bharat, Ankit
Jayaraman, Arun
Xu, Shuai
Rogers, John A.
author_facet Ni, Xiaoyue
Ouyang, Wei
Jeong, Hyoyoung
Kim, Jin-Tae
Tzaveils, Andreas
Mirzazadeh, Ali
Wu, Changsheng
Lee, Jong Yoon
Keller, Matthew
Mummidisetty, Chaithanya K.
Patel, Manish
Shawen, Nicholas
Huang, Joy
Chen, Hope
Ravi, Sowmya
Chang, Jan-Kai
Lee, KunHyuck
Wu, Yixin
Lie, Ferrona
Kang, Youn J.
Kim, Jong Uk
Chamorro, Leonardo P.
Banks, Anthony R.
Bharat, Ankit
Jayaraman, Arun
Xu, Shuai
Rogers, John A.
author_sort Ni, Xiaoyue
collection PubMed
description Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.
format Online
Article
Text
id pubmed-8126790
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-81267902021-05-21 Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients Ni, Xiaoyue Ouyang, Wei Jeong, Hyoyoung Kim, Jin-Tae Tzaveils, Andreas Mirzazadeh, Ali Wu, Changsheng Lee, Jong Yoon Keller, Matthew Mummidisetty, Chaithanya K. Patel, Manish Shawen, Nicholas Huang, Joy Chen, Hope Ravi, Sowmya Chang, Jan-Kai Lee, KunHyuck Wu, Yixin Lie, Ferrona Kang, Youn J. Kim, Jong Uk Chamorro, Leonardo P. Banks, Anthony R. Bharat, Ankit Jayaraman, Arun Xu, Shuai Rogers, John A. Proc Natl Acad Sci U S A Physical Sciences Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups. National Academy of Sciences 2021-05-11 2021-04-23 /pmc/articles/PMC8126790/ /pubmed/33893178 http://dx.doi.org/10.1073/pnas.2026610118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Physical Sciences
Ni, Xiaoyue
Ouyang, Wei
Jeong, Hyoyoung
Kim, Jin-Tae
Tzaveils, Andreas
Mirzazadeh, Ali
Wu, Changsheng
Lee, Jong Yoon
Keller, Matthew
Mummidisetty, Chaithanya K.
Patel, Manish
Shawen, Nicholas
Huang, Joy
Chen, Hope
Ravi, Sowmya
Chang, Jan-Kai
Lee, KunHyuck
Wu, Yixin
Lie, Ferrona
Kang, Youn J.
Kim, Jong Uk
Chamorro, Leonardo P.
Banks, Anthony R.
Bharat, Ankit
Jayaraman, Arun
Xu, Shuai
Rogers, John A.
Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title_full Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title_fullStr Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title_full_unstemmed Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title_short Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients
title_sort automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for covid-19 patients
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126790/
https://www.ncbi.nlm.nih.gov/pubmed/33893178
http://dx.doi.org/10.1073/pnas.2026610118
work_keys_str_mv AT nixiaoyue automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT ouyangwei automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT jeonghyoyoung automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT kimjintae automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT tzaveilsandreas automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT mirzazadehali automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT wuchangsheng automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT leejongyoon automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT kellermatthew automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT mummidisettychaithanyak automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT patelmanish automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT shawennicholas automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT huangjoy automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT chenhope automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT ravisowmya automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT changjankai automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT leekunhyuck automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT wuyixin automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT lieferrona automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT kangyounj automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT kimjonguk automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT chamorroleonardop automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT banksanthonyr automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT bharatankit automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT jayaramanarun automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT xushuai automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients
AT rogersjohna automatedmultiparametricmonitoringofrespiratorybiomarkersandvitalsignsinclinicalandhomesettingsforcovid19patients