Cargando…
Improving the sensitivity of cluster‐based statistics for functional magnetic resonance imaging data
Because of the high dimensionality of neuroimaging data, identifying a statistical test that is both valid and maximally sensitive is an important challenge. Here, we present a combination of two approaches for functional magnetic resonance imaging (fMRI) data analysis that together result in substa...
Autores principales: | Geerligs, Linda, Maris, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127161/ https://www.ncbi.nlm.nih.gov/pubmed/33724597 http://dx.doi.org/10.1002/hbm.25399 |
Ejemplares similares
-
Improving the Sensitivity of Task-Related Functional Magnetic Resonance Imaging Data Using Generalized Canonical Correlation Analysis
por: Kosteletou, Emmanouela, et al.
Publicado: (2021) -
Functional magnetic resonance imaging in episodic cluster headache
por: Morelli, Nicola, et al.
Publicado: (2008) -
Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference
por: Noble, Stephanie, et al.
Publicado: (2022) -
Statistical normalization techniques for magnetic resonance imaging()()
por: Shinohara, Russell T., et al.
Publicado: (2014) -
Improving functional magnetic resonance imaging reproducibility
por: Pernet, Cyril, et al.
Publicado: (2015)