Cargando…

A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues

Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bitton, Aric, Sambrano, Jesus, Valentino, Samantha, Houston, Jessica P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127321/
https://www.ncbi.nlm.nih.gov/pubmed/34007839
http://dx.doi.org/10.3389/fphy.2021.648553
Descripción
Sumario:Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.