Cargando…
Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy
BACKGROUND: Machine learning has many attractive theoretic properties, specifically, the ability to handle non predefined relations. Additionally, studies have validated the clinical utility of mpMRI for the detection and localization of CSPCa (Gleason score ≥ 3 + 4). In this study, we sought to dev...
Autores principales: | Yu, Shuanbao, Tao, Jin, Dong, Biao, Fan, Yafeng, Du, Haopeng, Deng, Haotian, Cui, Jinshan, Hong, Guodong, Zhang, Xuepei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127331/ https://www.ncbi.nlm.nih.gov/pubmed/33993876 http://dx.doi.org/10.1186/s12894-021-00849-w |
Ejemplares similares
-
Multivariable Models Incorporating Multiparametric Magnetic Resonance Imaging Efficiently Predict Results of Prostate Biopsy and Reduce Unnecessary Biopsy
por: Yu, Shuanbao, et al.
Publicado: (2020) -
Evaluating Incidence, Location, and Predictors of Positive Surgical Margin Among Chinese Men Undergoing Robot-Assisted Radical Prostatectomy
por: Qu, Wugong, et al.
Publicado: (2021) -
Developing Strategy to Predict the Results of Prostate Multiparametric Magnetic Resonance Imaging and Reduce Unnecessary Multiparametric Magnetic Resonance Imaging Scan
por: Liu, Junxiao, et al.
Publicado: (2021) -
Using clinical parameters to predict prostate cancer and reduce the unnecessary biopsy among patients with PSA in the gray zone
por: Liu, Junxiao, et al.
Publicado: (2020) -
Head-to-head comparison of prostate cancer risk calculators predicting biopsy outcome
por: Pereira-Azevedo, Nuno, et al.
Publicado: (2018)