Cargando…
Construction and validation of a machine learning‐based nomogram: A tool to predict the risk of getting severe coronavirus disease 2019 (COVID‐19)
BACKGROUND: Identifying patients who may develop severe coronavirus disease 2019 (COVID‐19) will facilitate personalized treatment and optimize the distribution of medical resources. METHODS: In this study, 590 COVID‐19 patients during hospitalization were enrolled (Training set: n = 285; Internal v...
Autores principales: | Yao, Zhixian, Zheng, Xinyi, Zheng, Zhong, Wu, Ke, Zheng, Junhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127556/ https://www.ncbi.nlm.nih.gov/pubmed/33713584 http://dx.doi.org/10.1002/iid3.421 |
Ejemplares similares
-
The diagnosis of pandemic coronavirus pneumonia: A review of radiology examination and laboratory test
por: Zheng, Zhong, et al.
Publicado: (2020) -
Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2
por: Yao, Zhixian, et al.
Publicado: (2020) -
The prediction for development of COVID-19 in global major epidemic areas through empirical trends in China by utilizing state transition matrix model
por: Zheng, Zhong, et al.
Publicado: (2020) -
Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma
por: Wu, Ke, et al.
Publicado: (2021) -
Comprehensive Characterization of Metabolism-Associated Subtypes of Renal Cell Carcinoma to Aid Clinical Therapy
por: Yao, Zhixian, et al.
Publicado: (2022)