Cargando…
Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears
Computer-assisted algorithms have become a mainstay of biomedical applications to improve accuracy and reproducibility of repetitive tasks like manual segmentation and annotation. We propose a novel pipeline for red blood cell detection and counting in thin blood smear microscopy images, named RBCNe...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127616/ https://www.ncbi.nlm.nih.gov/pubmed/33119516 http://dx.doi.org/10.1109/JBHI.2020.3034863 |
Ejemplares similares
-
Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis
por: Ufuktepe, Deniz Kavzak, et al.
Publicado: (2021) -
Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application
por: Fuhad, K. M. Faizullah, et al.
Publicado: (2020) -
Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears
por: Wang, Geng, et al.
Publicado: (2023) -
Evaluating the Performance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears
por: Uzun Ozsahin, Dilber, et al.
Publicado: (2022) -
Malaria Detection Using Advanced Deep Learning Architecture
por: Siłka, Wojciech, et al.
Publicado: (2023)