Cargando…
Assessment of the confidence interval in the multivariable normal tissue complication probability model for predicting radiation-induced liver disease in primary liver cancer
We developed a confidence interval-(CI) assessing model in multivariable normal tissue complication probability (NTCP) modeling for predicting radiation-induced liver disease (RILD) in primary liver cancer patients using clinical and dosimetric data. Both the mean NTCP and difference in the mean NTC...
Autores principales: | Prayongrat, Anussara, Srimaneekarn, Natchalee, Sriswasdi, Sira, Ito, Yoichi M, Katoh, Norio, Tamura, Masaya, Dekura, Yasuhiro, Toramatsu, Chie, Khorprasert, Chonlakiet, Amornwichet, Napapat, Alisanant, Petch, Hirata, Yuichi, Hayter, Anthony, Shirato, Hiroki, Shimizu, Shinichi, Kobashi, Keiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127660/ https://www.ncbi.nlm.nih.gov/pubmed/33899102 http://dx.doi.org/10.1093/jrr/rrab011 |
Ejemplares similares
-
Machine learning-based normal tissue complication probability model for predicting albumin-bilirubin (ALBI) grade increase in hepatocellular carcinoma patients
por: Prayongrat, Anussara, et al.
Publicado: (2022) -
Correction: Machine learning-based normal tissue complication probability model for predicting albumin-bilirubin (ALBI) grade increase in hepatocellular carcinoma patients
por: Prayongrat, Anussara, et al.
Publicado: (2023) -
Advanced radiotherapy technique in hepatocellular carcinoma with portal vein thrombosis: Feasibility and clinical outcomes
por: Khorprasert, Chonlakiet, et al.
Publicado: (2021) -
Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy
por: Kobashi, Keiji, et al.
Publicado: (2018) -
Flattening filter free stereotactic body radiation therapy for lung tumors: outcomes and predictive factors
por: Jaruthien, Thitiporn, et al.
Publicado: (2021)