Cargando…

Reactive air surfaces for preventing pressure ulcers

BACKGROUND: Pressure ulcers (also known as pressure injuries, pressure sores, decubitus ulcers and bed sores) are localised injuries to the skin or underlying soft tissue, or both, caused by unrelieved pressure, shear or friction. Reactive air surfaces (beds, mattresses or overlays) can be used for...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Chunhu, Dumville, Jo C, Cullum, Nicky, Rhodes, Sarah, Leung, Vannessa, McInnes, Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127698/
https://www.ncbi.nlm.nih.gov/pubmed/33999463
http://dx.doi.org/10.1002/14651858.CD013622.pub2
_version_ 1783693994310500352
author Shi, Chunhu
Dumville, Jo C
Cullum, Nicky
Rhodes, Sarah
Leung, Vannessa
McInnes, Elizabeth
author_facet Shi, Chunhu
Dumville, Jo C
Cullum, Nicky
Rhodes, Sarah
Leung, Vannessa
McInnes, Elizabeth
author_sort Shi, Chunhu
collection PubMed
description BACKGROUND: Pressure ulcers (also known as pressure injuries, pressure sores, decubitus ulcers and bed sores) are localised injuries to the skin or underlying soft tissue, or both, caused by unrelieved pressure, shear or friction. Reactive air surfaces (beds, mattresses or overlays) can be used for preventing pressure ulcers. OBJECTIVES: To assess the effects of reactive air beds, mattresses or overlays compared with any support surface on the incidence of pressure ulcers in any population in any setting. SEARCH METHODS: In November 2019, we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In‐Process & Other Non‐Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta‐analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. SELECTION CRITERIA: We included randomised controlled trials that allocated participants of any age to reactive air beds, overlays or mattresses. Comparators were any beds, overlays or mattresses that were applied for preventing pressure ulcers. DATA COLLECTION AND ANALYSIS: At least two review authors independently assessed studies using predetermined inclusion criteria. We carried out data extraction, 'Risk of bias' assessment using the Cochrane 'Risk of bias' tool, and the certainty of the evidence assessment according to Grading of Recommendations, Assessment, Development and Evaluations methodology. If a reactive air surface was compared with surfaces that were not clearly specified, then we recorded and described the concerned study but did not included it in further data analyses. MAIN RESULTS: We included 17 studies (2604 participants) in this review. Most studies were small (median study sample size: 83 participants). The average participant age ranged from 56 to 87 years (median: 72 years). Participants were recruited from a wide range of care settings with the majority being acute care settings. Almost all studies were conducted in the regions of Europe and America. Of the 17 included studies, two (223 participants) compared reactive air surfaces with surfaces that were not well described and therefore could not be classified. We analysed data for five comparisons: reactive air surfaces compared with (1) alternating pressure (active) air surfaces (seven studies with 1728 participants), (2) foam surfaces (four studies with 229 participants), (3) reactive water surfaces (one study with 37 participants), (4) reactive gel surfaces (one study with 66 participants), and (5) another type of reactive air surface (two studies with 223 participants). Of the 17 studies, seven (41.2%) presented findings which were considered at high overall risk of bias. Primary outcome: Pressure ulcer incidence Reactive air surfaces may reduce the proportion of participants developing a new pressure ulcer compared with foam surfaces (risk ratio (RR) 0.42; 95% confidence interval (CI) 0.18 to 0.96; I(2) = 25%; 4 studies, 229 participants; low‐certainty evidence). It is uncertain if there is a difference in the proportions of participants developing a new pressure ulcer on reactive air surfaces compared with: alternating pressure (active) air surfaces (6 studies, 1648 participants); reactive water surfaces (1 study, 37 participants); reactive gel surfaces (1 study, 66 participants), or another type of reactive air surface (2 studies, 223 participants). Evidence for all these comparisons is of very low certainty. Included studies have data on time to pressure ulcer incidence for two comparisons. When time to pressure ulcer incidence is considered using a hazard ratio (HR), low‐certainty evidence suggests that in the nursing home setting, people on reactive air surfaces may be less likely to develop a new pressure ulcer over 14 days' of follow‐up than people on alternating pressure (active) air surfaces (HR 0.44; 95% CI 0.21 to 0.96; 1 study, 308 participants). It is uncertain if there is a difference in the hazard of developing new pressure ulcers between two types of reactive air surfaces (1 study, 123 participants; very low‐certainty evidence). Secondary outcomes Support‐surface‐associated patient comfort: the included studies have data on this outcome for three comparisons. We could not pool any data as comfort outcome measures differed between included studies; therefore a narrative summary is provided. It is uncertain if there is a difference in patient comfort responses between reactive air surfaces and foam surfaces over the top of an alternating pressure (active) air surfaces (1 study, 72 participants), and between those using reactive air surfaces and those using alternating pressure (active) air surfaces (4 studies, 1364 participants). Evidence for these two comparisons is of very low certainty. It is also uncertain if there is a difference in patient comfort responses between two types of reactive air surfaces (1 study, 84 participants; low‐certainty evidence). All reported adverse events: there were data on this outcome for one comparison: it is uncertain if there is a difference in adverse events between reactive air surfaces and foam surfaces (1 study, 72 participants; very low‐certainty evidence). The included studies have no data for health‐related quality of life and cost‐effectiveness for all five comparisons. AUTHORS' CONCLUSIONS: Current evidence is uncertain regarding any differences in the relative effects of reactive air surfaces on ulcer incidence and patient comfort, when compared with reactive water surfaces, reactive gel surfaces, or another type of reactive air surface. Using reactive air surfaces may reduce the risk of developing new pressure ulcers compared with using foam surfaces. Also, using reactive air surfaces may reduce the risk of developing new pressure ulcers within 14 days compared with alternating pressure (active) air surfaces in people in a nursing home setting. Future research in this area should consider evaluation of the most important support surfaces from the perspective of decision‐makers. Time‐to‐event outcomes, careful assessment of adverse events and trial‐level cost‐effectiveness evaluation should be considered in future studies. Trials should be designed to minimise the risk of detection bias; for example, by using digital photography and adjudicators of the photographs being blinded to group allocation. Further review using network meta‐analysis adds to the findings reported here.
format Online
Article
Text
id pubmed-8127698
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-81276982021-05-18 Reactive air surfaces for preventing pressure ulcers Shi, Chunhu Dumville, Jo C Cullum, Nicky Rhodes, Sarah Leung, Vannessa McInnes, Elizabeth Cochrane Database Syst Rev BACKGROUND: Pressure ulcers (also known as pressure injuries, pressure sores, decubitus ulcers and bed sores) are localised injuries to the skin or underlying soft tissue, or both, caused by unrelieved pressure, shear or friction. Reactive air surfaces (beds, mattresses or overlays) can be used for preventing pressure ulcers. OBJECTIVES: To assess the effects of reactive air beds, mattresses or overlays compared with any support surface on the incidence of pressure ulcers in any population in any setting. SEARCH METHODS: In November 2019, we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In‐Process & Other Non‐Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta‐analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. SELECTION CRITERIA: We included randomised controlled trials that allocated participants of any age to reactive air beds, overlays or mattresses. Comparators were any beds, overlays or mattresses that were applied for preventing pressure ulcers. DATA COLLECTION AND ANALYSIS: At least two review authors independently assessed studies using predetermined inclusion criteria. We carried out data extraction, 'Risk of bias' assessment using the Cochrane 'Risk of bias' tool, and the certainty of the evidence assessment according to Grading of Recommendations, Assessment, Development and Evaluations methodology. If a reactive air surface was compared with surfaces that were not clearly specified, then we recorded and described the concerned study but did not included it in further data analyses. MAIN RESULTS: We included 17 studies (2604 participants) in this review. Most studies were small (median study sample size: 83 participants). The average participant age ranged from 56 to 87 years (median: 72 years). Participants were recruited from a wide range of care settings with the majority being acute care settings. Almost all studies were conducted in the regions of Europe and America. Of the 17 included studies, two (223 participants) compared reactive air surfaces with surfaces that were not well described and therefore could not be classified. We analysed data for five comparisons: reactive air surfaces compared with (1) alternating pressure (active) air surfaces (seven studies with 1728 participants), (2) foam surfaces (four studies with 229 participants), (3) reactive water surfaces (one study with 37 participants), (4) reactive gel surfaces (one study with 66 participants), and (5) another type of reactive air surface (two studies with 223 participants). Of the 17 studies, seven (41.2%) presented findings which were considered at high overall risk of bias. Primary outcome: Pressure ulcer incidence Reactive air surfaces may reduce the proportion of participants developing a new pressure ulcer compared with foam surfaces (risk ratio (RR) 0.42; 95% confidence interval (CI) 0.18 to 0.96; I(2) = 25%; 4 studies, 229 participants; low‐certainty evidence). It is uncertain if there is a difference in the proportions of participants developing a new pressure ulcer on reactive air surfaces compared with: alternating pressure (active) air surfaces (6 studies, 1648 participants); reactive water surfaces (1 study, 37 participants); reactive gel surfaces (1 study, 66 participants), or another type of reactive air surface (2 studies, 223 participants). Evidence for all these comparisons is of very low certainty. Included studies have data on time to pressure ulcer incidence for two comparisons. When time to pressure ulcer incidence is considered using a hazard ratio (HR), low‐certainty evidence suggests that in the nursing home setting, people on reactive air surfaces may be less likely to develop a new pressure ulcer over 14 days' of follow‐up than people on alternating pressure (active) air surfaces (HR 0.44; 95% CI 0.21 to 0.96; 1 study, 308 participants). It is uncertain if there is a difference in the hazard of developing new pressure ulcers between two types of reactive air surfaces (1 study, 123 participants; very low‐certainty evidence). Secondary outcomes Support‐surface‐associated patient comfort: the included studies have data on this outcome for three comparisons. We could not pool any data as comfort outcome measures differed between included studies; therefore a narrative summary is provided. It is uncertain if there is a difference in patient comfort responses between reactive air surfaces and foam surfaces over the top of an alternating pressure (active) air surfaces (1 study, 72 participants), and between those using reactive air surfaces and those using alternating pressure (active) air surfaces (4 studies, 1364 participants). Evidence for these two comparisons is of very low certainty. It is also uncertain if there is a difference in patient comfort responses between two types of reactive air surfaces (1 study, 84 participants; low‐certainty evidence). All reported adverse events: there were data on this outcome for one comparison: it is uncertain if there is a difference in adverse events between reactive air surfaces and foam surfaces (1 study, 72 participants; very low‐certainty evidence). The included studies have no data for health‐related quality of life and cost‐effectiveness for all five comparisons. AUTHORS' CONCLUSIONS: Current evidence is uncertain regarding any differences in the relative effects of reactive air surfaces on ulcer incidence and patient comfort, when compared with reactive water surfaces, reactive gel surfaces, or another type of reactive air surface. Using reactive air surfaces may reduce the risk of developing new pressure ulcers compared with using foam surfaces. Also, using reactive air surfaces may reduce the risk of developing new pressure ulcers within 14 days compared with alternating pressure (active) air surfaces in people in a nursing home setting. Future research in this area should consider evaluation of the most important support surfaces from the perspective of decision‐makers. Time‐to‐event outcomes, careful assessment of adverse events and trial‐level cost‐effectiveness evaluation should be considered in future studies. Trials should be designed to minimise the risk of detection bias; for example, by using digital photography and adjudicators of the photographs being blinded to group allocation. Further review using network meta‐analysis adds to the findings reported here. John Wiley & Sons, Ltd 2021-05-07 /pmc/articles/PMC8127698/ /pubmed/33999463 http://dx.doi.org/10.1002/14651858.CD013622.pub2 Text en Copyright © 2021 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial Licence (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Shi, Chunhu
Dumville, Jo C
Cullum, Nicky
Rhodes, Sarah
Leung, Vannessa
McInnes, Elizabeth
Reactive air surfaces for preventing pressure ulcers
title Reactive air surfaces for preventing pressure ulcers
title_full Reactive air surfaces for preventing pressure ulcers
title_fullStr Reactive air surfaces for preventing pressure ulcers
title_full_unstemmed Reactive air surfaces for preventing pressure ulcers
title_short Reactive air surfaces for preventing pressure ulcers
title_sort reactive air surfaces for preventing pressure ulcers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127698/
https://www.ncbi.nlm.nih.gov/pubmed/33999463
http://dx.doi.org/10.1002/14651858.CD013622.pub2
work_keys_str_mv AT shichunhu reactiveairsurfacesforpreventingpressureulcers
AT dumvillejoc reactiveairsurfacesforpreventingpressureulcers
AT cullumnicky reactiveairsurfacesforpreventingpressureulcers
AT rhodessarah reactiveairsurfacesforpreventingpressureulcers
AT leungvannessa reactiveairsurfacesforpreventingpressureulcers
AT mcinneselizabeth reactiveairsurfacesforpreventingpressureulcers