Cargando…
Identification of combinations of somatic mutations that predict cancer survival and immunotherapy benefit
Cancer evolves through the accumulation of somatic mutations over time. Although several methods have been developed to characterize mutational processes in cancers, these have not been specifically designed to identify mutational patterns that predict patient prognosis. Here we present CLICnet, a m...
Autores principales: | Gussow, Ayal B, Koonin, Eugene V, Auslander, Noam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8127965/ https://www.ncbi.nlm.nih.gov/pubmed/34027407 http://dx.doi.org/10.1093/narcan/zcab017 |
Ejemplares similares
-
Incorporating Machine Learning into Established Bioinformatics Frameworks
por: Auslander, Noam, et al.
Publicado: (2021) -
Prediction of the incubation period for COVID-19 and future virus disease outbreaks
por: Gussow, Ayal B., et al.
Publicado: (2020) -
Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses
por: Gussow, Ayal B., et al.
Publicado: (2020) -
Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses
por: Gussow, Ayal B., et al.
Publicado: (2020) -
Immune‐related signature predicts the prognosis and immunotherapy benefit in bladder cancer
por: Wang, Yejinpeng, et al.
Publicado: (2020)