Cargando…
Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data
We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a comprehensive meta-analysis...
Autores principales: | Schaack, Dominik, Weigand, Markus A., Uhle, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128240/ https://www.ncbi.nlm.nih.gov/pubmed/33999966 http://dx.doi.org/10.1371/journal.pone.0251800 |
Ejemplares similares
-
The immunosuppressive face of sepsis early on intensive care unit—A large-scale microarray meta-analysis
por: Schaack, Dominik, et al.
Publicado: (2018) -
Sepsis Induces a Long-Lasting State of Trained Immunity in Bone Marrow Monocytes
por: Bomans, Katharina, et al.
Publicado: (2018) -
Paternal sepsis induces alterations of the sperm methylome and dampens offspring immune responses—an animal study
por: Bomans, Katharina, et al.
Publicado: (2018) -
Sepsis in der prähospitalen Notfallmedizin: Was können prähospital Tätige aus der Surviving Sepsis Campaign und S3-Leitlinie ziehen?
por: Obermaier, Manuel, et al.
Publicado: (2021) -
Low-Density Granulocyte Contamination From Peripheral Blood Mononuclear Cells of Patients With Sepsis and How to Remove It – A Technical Report
por: Schenz, Judith, et al.
Publicado: (2021)