Cargando…

Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells

INTRODUCTION: Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of mal...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdellatif, Ahmed A H, Alsharidah, Mansour, Al Rugaie, Osamah, Tawfeek, Hesham M, Tolba, Nahla Sameh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128348/
https://www.ncbi.nlm.nih.gov/pubmed/34012256
http://dx.doi.org/10.2147/DDDT.S310760
Descripción
Sumario:INTRODUCTION: Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of malignancies, more metastases, and generally poor prognosis for the patient. The research sought to assess the effect of silver nanoparticles reduced with ethyl cellulose polymer (AgNPs-EC) on TNF-α expression in MCF-7 human breast cancer cells. METHODS: The AgNPs-EC were produced using the green synthesis reduction method, and their formation was proofed via UV–VIS spectroscopy. Furthermore, AgNPs-EC were characterized for their size, charge, morphology, Ag ion release, and stability. The MCF-7 cells were treated with AgNPs-EC. Then, the expression of TNF-α genes was determined through PCR in real time, and protein expression was studied using ELISA. RESULTS: The AgNPs-EC were spherical with an average size of 150±5.1 nm and a zeta-potential of −41.4±0.98 mV. AgNPs-EC had an inhibitory effect on cytokine mRNA and protein expression levels, which suggests that they could be used safely in the fight against cancer. AgNPs-EC cytotoxicity was also found to be non-toxic to MCF-7. CONCLUSION: Our data determined AgNPs-EC as a novel inhibitor of TNF-α production. These results are promising for developing novel therapeutic approaches for the future treatment of cancer with safe materials.