Cargando…
Correction to: Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
Autores principales: | Koitka, Sven, Kroll, Lennard, Malamutmann, Eugen, Oezcelik, Arzu, Nensa, Felix |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128717/ https://www.ncbi.nlm.nih.gov/pubmed/33245498 http://dx.doi.org/10.1007/s00330-020-07443-y |
Ejemplares similares
-
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
por: Koitka, Sven, et al.
Publicado: (2020) -
Fully automated preoperative liver volumetry incorporating the anatomical location of the central hepatic vein
por: Koitka, Sven, et al.
Publicado: (2022) -
Assessing the Role of Pericardial Fat as a Biomarker Connected to Coronary Calcification—A Deep Learning Based Approach Using Fully Automated Body Composition Analysis
por: Kroll, Lennard, et al.
Publicado: (2021) -
Biomarkers extracted by fully automated body composition analysis from chest CT correlate with SARS-CoV-2 outcome severity
por: Hosch, René, et al.
Publicado: (2022) -
CT-derived body composition analysis could possibly replace DXA and BIA to monitor NET-patients
por: Kroll, Lennard, et al.
Publicado: (2022)