Cargando…
Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation
OBJECTIVE: The aim is to evaluate whether smart worklist prioritization by artificial intelligence (AI) can optimize the radiology workflow and reduce report turnaround times (RTATs) for critical findings in chest radiographs (CXRs). Furthermore, we investigate a method to counteract the effect of f...
Autores principales: | Baltruschat, Ivo, Steinmeister, Leonhard, Nickisch, Hannes, Saalbach, Axel, Grass, Michael, Adam, Gerhard, Knopp, Tobias, Ittrich, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128725/ https://www.ncbi.nlm.nih.gov/pubmed/33219850 http://dx.doi.org/10.1007/s00330-020-07480-7 |
Ejemplares similares
-
Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification
por: Baltruschat, Ivo M., et al.
Publicado: (2019) -
Automated age- and sex-specific volumetric estimation of regional brain atrophy: workflow and feasibility
por: Caspers, Julian, et al.
Publicado: (2020) -
Artificial Intelligence–assisted chest X-ray assessment scheme for COVID-19
por: Rangarajan, Krithika, et al.
Publicado: (2021) -
Automated quantification of COVID-19 severity and progression using chest CT images
por: Pu, Jiantao, et al.
Publicado: (2020) -
How do providers of artificial intelligence (AI) solutions propose and legitimize the values of their solutions for supporting diagnostic radiology workflow? A technography study in 2021
por: Mehrizi, Mohammad H. Rezazade, et al.
Publicado: (2022)