Cargando…
Improvement of late gadolinium enhancement image quality using a deep learning–based reconstruction algorithm and its influence on myocardial scar quantification
OBJECTIVES: The aim of this study was to assess the effect of a deep learning (DL)–based reconstruction algorithm on late gadolinium enhancement (LGE) image quality and to evaluate its influence on scar quantification. METHODS: Sixty patients (46 ± 17 years, 50% male) with suspected or known cardiom...
Autores principales: | van der Velde, Nikki, Hassing, H. Carlijne, Bakker, Brendan J., Wielopolski, Piotr A., Lebel, R. Marc, Janich, Martin A., Kardys, Isabella, Budde, Ricardo P. J., Hirsch, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128730/ https://www.ncbi.nlm.nih.gov/pubmed/33219845 http://dx.doi.org/10.1007/s00330-020-07461-w |
Ejemplares similares
-
Automated quantification of COVID-19 severity and progression using chest CT images
por: Pu, Jiantao, et al.
Publicado: (2020) -
Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach
por: Mobini, Nazanin, et al.
Publicado: (2023) -
Computed tomography semi-automated lung volume quantification in SARS-CoV-2-related pneumonia
por: Ippolito, Davide, et al.
Publicado: (2020) -
Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema
por: Nowak, Sebastian, et al.
Publicado: (2022) -
Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform
por: Fornacon-Wood, Isabella, et al.
Publicado: (2020)