Cargando…

Evaluation of the FUSION-X-US-II prototype to combine automated breast ultrasound and tomosynthesis

OBJECTIVE: The FUSION-X-US-II prototype was developed to combine 3D automated breast ultrasound (ABUS) and digital breast tomosynthesis in a single device. We evaluated the performance of ABUS and tomosynthesis in a single examination in a clinical setting. METHODS: In this prospective feasibility s...

Descripción completa

Detalles Bibliográficos
Autores principales: Schäfgen, Benedikt, Juskic, Marija, Radicke, Marcus, Hertel, Madeleine, Barr, Richard, Pfob, André, Togawa, Riku, Nees, Juliane, von Au, Alexandra, Fastner, Sarah, Harcos, Aba, Gomez, Christina, Stieber, Anne, Riedel, Fabian, Hennigs, André, Sohn, Christof, Heil, Joerg, Golatta, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128739/
https://www.ncbi.nlm.nih.gov/pubmed/33313983
http://dx.doi.org/10.1007/s00330-020-07573-3
Descripción
Sumario:OBJECTIVE: The FUSION-X-US-II prototype was developed to combine 3D automated breast ultrasound (ABUS) and digital breast tomosynthesis in a single device. We evaluated the performance of ABUS and tomosynthesis in a single examination in a clinical setting. METHODS: In this prospective feasibility study, digital breast tomosynthesis and ABUS were performed using the FUSION-X-US-II prototype without any change of the breast position in patients referred for clarification of breast lesions with an indication for tomosynthesis. The tomosynthesis and ABUS images of the prototype were interpreted independently from the clinical standard by a breast diagnostics specialist. Any detected lesion was classified using BI-RADS® scores, and results of the standard clinical routine workup (gold standard) were compared to the result of the separate evaluation of the prototype images. Image quality was rated subjectively and coverage of the breast was measured. RESULTS: One hundred one patients received both ABUS and tomosynthesis using the prototype. The duration of the additional ABUS acquisition was 40 to 60 s. Breast coverage by ABUS was approximately 80.0%. ABUS image quality was rated as diagnostically useful in 86 of 101 cases (85.1%). Thirty-three of 34 malignant breast lesions (97.1%) were identified using the prototype. CONCLUSION: The FUSION-X-US-II prototype allows a fast ABUS scan in combination with digital breast tomosynthesis in a single device integrated in the clinical workflow. Malignant breast lesions can be localized accurately with direct correlation of ABUS and tomosynthesis images. The FUSION system shows the potential to improve breast cancer screening in the future after further technical improvements. KEY POINTS: • The FUSION-X-US-II prototype allows the combination of automated breast ultrasound and digital breast tomosynthesis in a single device without decompression of the breast. • Image quality and coverage of ABUS are sufficient to accurately detect malignant breast lesions. • If tomosynthesis and ABUS should become part of breast cancer screening, the combination of both techniques in one device could offer practical and logistic advantages. To evaluate a potential benefit of a combination of ABUS and tomosynthesis in screening-like settings, further studies are needed.