Cargando…

Mandrills learn two-day time intervals in a naturalistic foraging situation

Primates display high efficiency in finding food in complex environments. Knowledge that many plant species produce fruit simultaneously, can help primates to anticipate fruit finding at the start of fruiting seasons. Knowledge of elapsed time can help primates decide when to revisit food trees to f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozturk, Kavel C. D., Egas, Martijn, Janmaat, Karline R. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128742/
https://www.ncbi.nlm.nih.gov/pubmed/33258055
http://dx.doi.org/10.1007/s10071-020-01451-7
Descripción
Sumario:Primates display high efficiency in finding food in complex environments. Knowledge that many plant species produce fruit simultaneously, can help primates to anticipate fruit finding at the start of fruiting seasons. Knowledge of elapsed time can help primates decide when to revisit food trees to find ripened fruit and to return before competitors find these fruits. To investigate whether mandrills are able to learn time intervals of recurring food, we recorded the foraging choices of captive mandrills in a group setting. We used a procedure with renewable food rewards that could be searched for: carrots and grapes, hidden underground in specific places with different renewal intervals (2 and 5 days, respectively). We monitored the first choice of location for individuals, if other individuals had not already searched at the same location, to exclude possible effects of individuals following others rather than relying on memory. Throughout the study, the mandrills became increasingly likely to first search at carrot locations on carrot days, while the probability of them searching at carrot locations decreased on days without carrot. Due to model instability, our results were inconclusive about an effect of grape days on the choice of the mandrills. Cues provided by conspecifics indicating the availability of simultaneously emerging food rewards did not affect the choice of the mandrills. We conclude that mandrills can take into account elapsed time in a foraging context. Thereby, this study indicates how mandrills can use temporal cognitive abilities to overcome temporal challenges of food-finding in a group setting. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10071-020-01451-7.