Cargando…

Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges

ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non...

Descripción completa

Detalles Bibliográficos
Autores principales: Weikert, Thomas, Francone, Marco, Abbara, Suhny, Baessler, Bettina, Choi, Byoung Wook, Gutberlet, Matthias, Hecht, Elizabeth M., Loewe, Christian, Mousseaux, Elie, Natale, Luigi, Nikolaou, Konstantin, Ordovas, Karen G., Peebles, Charles, Prieto, Claudia, Salgado, Rodrigo, Velthuis, Birgitta, Vliegenthart, Rozemarijn, Bremerich, Jens, Leiner, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128798/
https://www.ncbi.nlm.nih.gov/pubmed/33211147
http://dx.doi.org/10.1007/s00330-020-07417-0
_version_ 1783694170236387328
author Weikert, Thomas
Francone, Marco
Abbara, Suhny
Baessler, Bettina
Choi, Byoung Wook
Gutberlet, Matthias
Hecht, Elizabeth M.
Loewe, Christian
Mousseaux, Elie
Natale, Luigi
Nikolaou, Konstantin
Ordovas, Karen G.
Peebles, Charles
Prieto, Claudia
Salgado, Rodrigo
Velthuis, Birgitta
Vliegenthart, Rozemarijn
Bremerich, Jens
Leiner, Tim
author_facet Weikert, Thomas
Francone, Marco
Abbara, Suhny
Baessler, Bettina
Choi, Byoung Wook
Gutberlet, Matthias
Hecht, Elizabeth M.
Loewe, Christian
Mousseaux, Elie
Natale, Luigi
Nikolaou, Konstantin
Ordovas, Karen G.
Peebles, Charles
Prieto, Claudia
Salgado, Rodrigo
Velthuis, Birgitta
Vliegenthart, Rozemarijn
Bremerich, Jens
Leiner, Tim
author_sort Weikert, Thomas
collection PubMed
description ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. KEY POINTS: • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00330-020-07417-0).
format Online
Article
Text
id pubmed-8128798
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-81287982021-05-24 Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges Weikert, Thomas Francone, Marco Abbara, Suhny Baessler, Bettina Choi, Byoung Wook Gutberlet, Matthias Hecht, Elizabeth M. Loewe, Christian Mousseaux, Elie Natale, Luigi Nikolaou, Konstantin Ordovas, Karen G. Peebles, Charles Prieto, Claudia Salgado, Rodrigo Velthuis, Birgitta Vliegenthart, Rozemarijn Bremerich, Jens Leiner, Tim Eur Radiol Cardiac ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. KEY POINTS: • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00330-020-07417-0). Springer Berlin Heidelberg 2020-11-19 2021 /pmc/articles/PMC8128798/ /pubmed/33211147 http://dx.doi.org/10.1007/s00330-020-07417-0 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Cardiac
Weikert, Thomas
Francone, Marco
Abbara, Suhny
Baessler, Bettina
Choi, Byoung Wook
Gutberlet, Matthias
Hecht, Elizabeth M.
Loewe, Christian
Mousseaux, Elie
Natale, Luigi
Nikolaou, Konstantin
Ordovas, Karen G.
Peebles, Charles
Prieto, Claudia
Salgado, Rodrigo
Velthuis, Birgitta
Vliegenthart, Rozemarijn
Bremerich, Jens
Leiner, Tim
Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title_full Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title_fullStr Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title_full_unstemmed Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title_short Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
title_sort machine learning in cardiovascular radiology: escr position statement on design requirements, quality assessment, current applications, opportunities, and challenges
topic Cardiac
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128798/
https://www.ncbi.nlm.nih.gov/pubmed/33211147
http://dx.doi.org/10.1007/s00330-020-07417-0
work_keys_str_mv AT weikertthomas machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT franconemarco machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT abbarasuhny machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT baesslerbettina machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT choibyoungwook machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT gutberletmatthias machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT hechtelizabethm machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT loewechristian machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT mousseauxelie machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT nataleluigi machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT nikolaoukonstantin machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT ordovaskareng machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT peeblescharles machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT prietoclaudia machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT salgadorodrigo machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT velthuisbirgitta machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT vliegenthartrozemarijn machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT bremerichjens machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges
AT leinertim machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges