Cargando…
Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges
ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128798/ https://www.ncbi.nlm.nih.gov/pubmed/33211147 http://dx.doi.org/10.1007/s00330-020-07417-0 |
_version_ | 1783694170236387328 |
---|---|
author | Weikert, Thomas Francone, Marco Abbara, Suhny Baessler, Bettina Choi, Byoung Wook Gutberlet, Matthias Hecht, Elizabeth M. Loewe, Christian Mousseaux, Elie Natale, Luigi Nikolaou, Konstantin Ordovas, Karen G. Peebles, Charles Prieto, Claudia Salgado, Rodrigo Velthuis, Birgitta Vliegenthart, Rozemarijn Bremerich, Jens Leiner, Tim |
author_facet | Weikert, Thomas Francone, Marco Abbara, Suhny Baessler, Bettina Choi, Byoung Wook Gutberlet, Matthias Hecht, Elizabeth M. Loewe, Christian Mousseaux, Elie Natale, Luigi Nikolaou, Konstantin Ordovas, Karen G. Peebles, Charles Prieto, Claudia Salgado, Rodrigo Velthuis, Birgitta Vliegenthart, Rozemarijn Bremerich, Jens Leiner, Tim |
author_sort | Weikert, Thomas |
collection | PubMed |
description | ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. KEY POINTS: • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00330-020-07417-0). |
format | Online Article Text |
id | pubmed-8128798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-81287982021-05-24 Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges Weikert, Thomas Francone, Marco Abbara, Suhny Baessler, Bettina Choi, Byoung Wook Gutberlet, Matthias Hecht, Elizabeth M. Loewe, Christian Mousseaux, Elie Natale, Luigi Nikolaou, Konstantin Ordovas, Karen G. Peebles, Charles Prieto, Claudia Salgado, Rodrigo Velthuis, Birgitta Vliegenthart, Rozemarijn Bremerich, Jens Leiner, Tim Eur Radiol Cardiac ABSTRACT: Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. KEY POINTS: • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00330-020-07417-0). Springer Berlin Heidelberg 2020-11-19 2021 /pmc/articles/PMC8128798/ /pubmed/33211147 http://dx.doi.org/10.1007/s00330-020-07417-0 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Cardiac Weikert, Thomas Francone, Marco Abbara, Suhny Baessler, Bettina Choi, Byoung Wook Gutberlet, Matthias Hecht, Elizabeth M. Loewe, Christian Mousseaux, Elie Natale, Luigi Nikolaou, Konstantin Ordovas, Karen G. Peebles, Charles Prieto, Claudia Salgado, Rodrigo Velthuis, Birgitta Vliegenthart, Rozemarijn Bremerich, Jens Leiner, Tim Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title | Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title_full | Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title_fullStr | Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title_full_unstemmed | Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title_short | Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
title_sort | machine learning in cardiovascular radiology: escr position statement on design requirements, quality assessment, current applications, opportunities, and challenges |
topic | Cardiac |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128798/ https://www.ncbi.nlm.nih.gov/pubmed/33211147 http://dx.doi.org/10.1007/s00330-020-07417-0 |
work_keys_str_mv | AT weikertthomas machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT franconemarco machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT abbarasuhny machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT baesslerbettina machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT choibyoungwook machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT gutberletmatthias machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT hechtelizabethm machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT loewechristian machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT mousseauxelie machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT nataleluigi machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT nikolaoukonstantin machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT ordovaskareng machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT peeblescharles machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT prietoclaudia machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT salgadorodrigo machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT velthuisbirgitta machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT vliegenthartrozemarijn machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT bremerichjens machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges AT leinertim machinelearningincardiovascularradiologyescrpositionstatementondesignrequirementsqualityassessmentcurrentapplicationsopportunitiesandchallenges |