Cargando…
Evaluation of a novel deep learning–based classifier for perifissural nodules
OBJECTIVES: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). METHODS: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were cla...
Autores principales: | Han, Daiwei, Heuvelmans, Marjolein, Rook, Mieneke, Dorrius, Monique, van Houten, Luutsen, Price, Noah Waterfield, Pickup, Lyndsey C., Novotny, Petr, Oudkerk, Matthijs, Declerck, Jerome, Gleeson, Fergus, van Ooijen, Peter, Vliegenthart, Rozemarijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128854/ https://www.ncbi.nlm.nih.gov/pubmed/33269413 http://dx.doi.org/10.1007/s00330-020-07509-x |
Ejemplares similares
-
Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability
por: Wang, Ying, et al.
Publicado: (2009) -
Association between visual emphysema and lung nodules on low-dose CT scan in a Chinese Lung Cancer Screening Program (Nelcin-B3)
por: Yang, Xiaofei, et al.
Publicado: (2022) -
Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study
por: Xie, Xueqian, et al.
Publicado: (2012) -
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume
por: Zhao, Yingru, et al.
Publicado: (2012) -
A practical approach to radiological evaluation of CT lung cancer screening examinations
por: Xie, Xueqian, et al.
Publicado: (2013)