Cargando…
Using First Principles for Deep Learning and Model-Based Control of Soft Robots
Model-based optimal control of soft robots may enable compliant, underdamped platforms to operate in a repeatable fashion and effectively accomplish tasks that are otherwise impossible for soft robots. Unfortunately, developing accurate analytical dynamic models for soft robots is time-consuming, di...
Autores principales: | Johnson, Curtis C., Quackenbush, Tyler, Sorensen, Taylor, Wingate, David, Killpack, Marc D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129000/ https://www.ncbi.nlm.nih.gov/pubmed/34017861 http://dx.doi.org/10.3389/frobt.2021.654398 |
Ejemplares similares
-
Model Reference Predictive Adaptive Control for Large-Scale Soft Robots
por: Hyatt, Phillip, et al.
Publicado: (2020) -
Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models
por: Hyatt, Phillip, et al.
Publicado: (2019) -
Performance Metrics for Fluidic Soft Robot Rotational Actuators
por: Rupert, Levi, et al.
Publicado: (2021) -
Design Optimization for Rough Terrain Traversal Using a Compliant, Continuum-Joint, Quadruped Robot
por: Sherrod , Vallan, et al.
Publicado: (2022) -
First-Order Dynamic Modeling and Control of Soft Robots
por: George Thuruthel, Thomas, et al.
Publicado: (2020)