Cargando…
Supervised dimensionality reduction for big data
To solve key biomedical problems, experimentalists now routinely measure millions or billions of features (dimensions) per sample, with the hope that data science techniques will be able to build accurate data-driven inferences. Because sample sizes are typically orders of magnitude smaller than the...
Autores principales: | Vogelstein, Joshua T., Bridgeford, Eric W., Tang, Minh, Zheng, Da, Douville, Christopher, Burns, Randal, Maggioni, Mauro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129083/ https://www.ncbi.nlm.nih.gov/pubmed/34001899 http://dx.doi.org/10.1038/s41467-021-23102-2 |
Ejemplares similares
-
Discovering and deciphering relationships across disparate data modalities
por: Vogelstein, Joshua T, et al.
Publicado: (2019) -
The Heritability of Human Connectomes: a Causal Modeling Analysis
por: Chung, Jaewon, et al.
Publicado: (2023) -
On a two-truths phenomenon in spectral graph clustering
por: Priebe, Carey E., et al.
Publicado: (2019) -
Haisu: Hierarchically supervised nonlinear dimensionality reduction
por: VanHorn, Kevin Christopher, et al.
Publicado: (2022) -
Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
por: Amouzgar, Meelad, et al.
Publicado: (2022)