Cargando…
Femtosecond control of phonon dynamics near a magnetic order critical point
The spin-phonon interaction in spin density wave (SDW) systems often determines the free energy landscape that drives the evolution of the system. When a passing energy flux, such as photoexcitation, drives a crystalline system far from equilibrium, the resulting lattice displacement generates trans...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129429/ https://www.ncbi.nlm.nih.gov/pubmed/34001880 http://dx.doi.org/10.1038/s41467-021-23059-2 |
_version_ | 1783694279547289600 |
---|---|
author | Gorobtsov, O. Yu. Ponet, L. Patel, S. K. K. Hua, N. Shabalin, A. G. Hrkac, S. Wingert, J. Cela, D. Glownia, J. M. Zhu, D. Medapalli, R. Chollet, M. Fullerton, E. E. Artyukhin, S. Shpyrko, O. G. Singer, A. |
author_facet | Gorobtsov, O. Yu. Ponet, L. Patel, S. K. K. Hua, N. Shabalin, A. G. Hrkac, S. Wingert, J. Cela, D. Glownia, J. M. Zhu, D. Medapalli, R. Chollet, M. Fullerton, E. E. Artyukhin, S. Shpyrko, O. G. Singer, A. |
author_sort | Gorobtsov, O. Yu. |
collection | PubMed |
description | The spin-phonon interaction in spin density wave (SDW) systems often determines the free energy landscape that drives the evolution of the system. When a passing energy flux, such as photoexcitation, drives a crystalline system far from equilibrium, the resulting lattice displacement generates transient vibrational states. Manipulating intermediate vibrational states in the vicinity of the critical point, where the SDW order parameter changes dramatically, would then allow dynamical control over functional properties. Here we combine double photoexcitation with an X-ray free-electron laser (XFEL) probe to control and detect the lifetime and magnitude of the intermediate vibrational state near the critical point of the SDW in chromium. We apply Landau theory to identify the mechanism of control as a repeated partial quench and sub picosecond recovery of the SDW. Our results showcase the capabilities to influence and monitor quantum states by combining multiple optical photoexcitations with an XFEL probe. They open new avenues for manipulating and researching the behaviour of photoexcited states in charge and spin order systems near the critical point. |
format | Online Article Text |
id | pubmed-8129429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81294292021-06-01 Femtosecond control of phonon dynamics near a magnetic order critical point Gorobtsov, O. Yu. Ponet, L. Patel, S. K. K. Hua, N. Shabalin, A. G. Hrkac, S. Wingert, J. Cela, D. Glownia, J. M. Zhu, D. Medapalli, R. Chollet, M. Fullerton, E. E. Artyukhin, S. Shpyrko, O. G. Singer, A. Nat Commun Article The spin-phonon interaction in spin density wave (SDW) systems often determines the free energy landscape that drives the evolution of the system. When a passing energy flux, such as photoexcitation, drives a crystalline system far from equilibrium, the resulting lattice displacement generates transient vibrational states. Manipulating intermediate vibrational states in the vicinity of the critical point, where the SDW order parameter changes dramatically, would then allow dynamical control over functional properties. Here we combine double photoexcitation with an X-ray free-electron laser (XFEL) probe to control and detect the lifetime and magnitude of the intermediate vibrational state near the critical point of the SDW in chromium. We apply Landau theory to identify the mechanism of control as a repeated partial quench and sub picosecond recovery of the SDW. Our results showcase the capabilities to influence and monitor quantum states by combining multiple optical photoexcitations with an XFEL probe. They open new avenues for manipulating and researching the behaviour of photoexcited states in charge and spin order systems near the critical point. Nature Publishing Group UK 2021-05-17 /pmc/articles/PMC8129429/ /pubmed/34001880 http://dx.doi.org/10.1038/s41467-021-23059-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gorobtsov, O. Yu. Ponet, L. Patel, S. K. K. Hua, N. Shabalin, A. G. Hrkac, S. Wingert, J. Cela, D. Glownia, J. M. Zhu, D. Medapalli, R. Chollet, M. Fullerton, E. E. Artyukhin, S. Shpyrko, O. G. Singer, A. Femtosecond control of phonon dynamics near a magnetic order critical point |
title | Femtosecond control of phonon dynamics near a magnetic order critical point |
title_full | Femtosecond control of phonon dynamics near a magnetic order critical point |
title_fullStr | Femtosecond control of phonon dynamics near a magnetic order critical point |
title_full_unstemmed | Femtosecond control of phonon dynamics near a magnetic order critical point |
title_short | Femtosecond control of phonon dynamics near a magnetic order critical point |
title_sort | femtosecond control of phonon dynamics near a magnetic order critical point |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129429/ https://www.ncbi.nlm.nih.gov/pubmed/34001880 http://dx.doi.org/10.1038/s41467-021-23059-2 |
work_keys_str_mv | AT gorobtsovoyu femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT ponetl femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT patelskk femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT huan femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT shabalinag femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT hrkacs femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT wingertj femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT celad femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT glowniajm femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT zhud femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT medapallir femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT cholletm femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT fullertonee femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT artyukhins femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT shpyrkoog femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint AT singera femtosecondcontrolofphonondynamicsnearamagneticordercriticalpoint |