Cargando…
Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms
Most microorganisms resist cultivation under standard laboratory conditions. On the other hand, cultivating microbes in a membrane-bound device incubated in nature (in situ cultivation) can be an effective approach to overcome this limitation. In the present study, we applied in situ cultivation to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129545/ https://www.ncbi.nlm.nih.gov/pubmed/34017313 http://dx.doi.org/10.3389/fmicb.2021.537194 |
_version_ | 1783694315285905408 |
---|---|
author | Jung, Dawoon Machida, Koshi Nakao, Yoichi Kindaichi, Tomonori Ohashi, Akiyoshi Aoi, Yoshiteru |
author_facet | Jung, Dawoon Machida, Koshi Nakao, Yoichi Kindaichi, Tomonori Ohashi, Akiyoshi Aoi, Yoshiteru |
author_sort | Jung, Dawoon |
collection | PubMed |
description | Most microorganisms resist cultivation under standard laboratory conditions. On the other hand, cultivating microbes in a membrane-bound device incubated in nature (in situ cultivation) can be an effective approach to overcome this limitation. In the present study, we applied in situ cultivation to isolate diverse previously uncultivated marine sponge-associated microbes and comparatively analyzed this method’s efficiencies with those of the conventional method. Then, we attempted to investigate the key and previously unidentified mechanism of growing uncultivated microorganisms by in situ cultivation focusing on growth triggering via growth initiation factor. Significantly more novel and diverse microbial types were isolated via in situ cultivation than by standard direct plating (SDP). We hypothesized that some of environmental microorganisms which resist cultivation are in a non-growing state and require growth initiation factors for the recovery and that these can be provided from the environment (in this study from marine sponge). According to the hypothesis, the effect of the sponge extract on recovery on agar medium was compared between strains derived from in situ and SDP cultivation. Adding small amounts of the sponge extracts to the medium elevated the colony-formation efficiencies of the in situ strains at the starvation recovery step, while it showed no positive effect on that of SDP strains. Conversely, specific growth rates or saturated cell densities of all tested strains were not positively affected. These results indicate that, (1) the sponge extract contains chemical compounds that facilitate recovery of non-growing microbes, (2) these substances worked on the in situ strains, and (3) growth initiation factor in the sponge extract did not continuously promote growth activity but worked as triggers for regrowth (resuscitation from non-growing state). |
format | Online Article Text |
id | pubmed-8129545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81295452021-05-19 Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms Jung, Dawoon Machida, Koshi Nakao, Yoichi Kindaichi, Tomonori Ohashi, Akiyoshi Aoi, Yoshiteru Front Microbiol Microbiology Most microorganisms resist cultivation under standard laboratory conditions. On the other hand, cultivating microbes in a membrane-bound device incubated in nature (in situ cultivation) can be an effective approach to overcome this limitation. In the present study, we applied in situ cultivation to isolate diverse previously uncultivated marine sponge-associated microbes and comparatively analyzed this method’s efficiencies with those of the conventional method. Then, we attempted to investigate the key and previously unidentified mechanism of growing uncultivated microorganisms by in situ cultivation focusing on growth triggering via growth initiation factor. Significantly more novel and diverse microbial types were isolated via in situ cultivation than by standard direct plating (SDP). We hypothesized that some of environmental microorganisms which resist cultivation are in a non-growing state and require growth initiation factors for the recovery and that these can be provided from the environment (in this study from marine sponge). According to the hypothesis, the effect of the sponge extract on recovery on agar medium was compared between strains derived from in situ and SDP cultivation. Adding small amounts of the sponge extracts to the medium elevated the colony-formation efficiencies of the in situ strains at the starvation recovery step, while it showed no positive effect on that of SDP strains. Conversely, specific growth rates or saturated cell densities of all tested strains were not positively affected. These results indicate that, (1) the sponge extract contains chemical compounds that facilitate recovery of non-growing microbes, (2) these substances worked on the in situ strains, and (3) growth initiation factor in the sponge extract did not continuously promote growth activity but worked as triggers for regrowth (resuscitation from non-growing state). Frontiers Media S.A. 2021-05-04 /pmc/articles/PMC8129545/ /pubmed/34017313 http://dx.doi.org/10.3389/fmicb.2021.537194 Text en Copyright © 2021 Jung, Machida, Nakao, Kindaichi, Ohashi and Aoi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Jung, Dawoon Machida, Koshi Nakao, Yoichi Kindaichi, Tomonori Ohashi, Akiyoshi Aoi, Yoshiteru Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title | Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title_full | Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title_fullStr | Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title_full_unstemmed | Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title_short | Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms |
title_sort | triggering growth via growth initiation factors in nature: a putative mechanism for in situ cultivation of previously uncultivated microorganisms |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129545/ https://www.ncbi.nlm.nih.gov/pubmed/34017313 http://dx.doi.org/10.3389/fmicb.2021.537194 |
work_keys_str_mv | AT jungdawoon triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms AT machidakoshi triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms AT nakaoyoichi triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms AT kindaichitomonori triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms AT ohashiakiyoshi triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms AT aoiyoshiteru triggeringgrowthviagrowthinitiationfactorsinnatureaputativemechanismforinsitucultivationofpreviouslyuncultivatedmicroorganisms |