Cargando…
Dynamic Functional Connectivity Change-Point Detection With Random Matrix Theory Inference
To study the dynamic nature of brain activity, functional magnetic resonance imaging (fMRI) data is useful including some temporal dependencies between the corresponding neural activity estimates. Recent studies have shown that the functional connectivity (FC) varies according to time and location w...
Autores principales: | Kim, Jaehee, Jeong, Woorim, Chung, Chun Kee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129561/ https://www.ncbi.nlm.nih.gov/pubmed/34017233 http://dx.doi.org/10.3389/fnins.2021.565029 |
Ejemplares similares
-
Single-Trial EEG Connectivity of Default Mode Network Before and During Encoding Predicts Subsequent Memory Outcome
por: Kim, Dahye, et al.
Publicado: (2020) -
Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
por: Xu, Yuting, et al.
Publicado: (2015) -
Episodic memory in aspects of large-scale brain networks
por: Jeong, Woorim, et al.
Publicado: (2015) -
Understanding the Impact of Neural Variations and Random Connections on Inference
por: Zeng, Yuan, et al.
Publicado: (2021) -
Detecting functional connectivity change points for single-subject fMRI data
por: Cribben, Ivor, et al.
Publicado: (2013)