Cargando…
NSGA-II as feature selection technique and AdaBoost classifier for COVID-19 prediction using patient’s symptoms
Nowadays, humanity is facing one of the most dangerous pandemics known as COVID-19. Due to its high inter-person contagiousness, COVID-19 is rapidly spreading across the world. Positive patients are often suffering from different symptoms that can vary from mild to severe including cough, fever, sor...
Autores principales: | Soui, Makram, Mansouri, Nesrine, Alhamad, Raed, Kessentini, Marouane, Ghedira, Khaled |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129611/ https://www.ncbi.nlm.nih.gov/pubmed/34025034 http://dx.doi.org/10.1007/s11071-021-06504-1 |
Ejemplares similares
-
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
por: Hu, Jianfeng
Publicado: (2017) -
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Clairvoyant: AdaBoost with Cost-Enabled Cost-Sensitive Classifier for Customer Churn Prediction
por: Thakkar, Hiren Kumar, et al.
Publicado: (2022) -
Chagas Parasite Detection in Blood Images Using AdaBoost
por: Uc-Cetina, Víctor, et al.
Publicado: (2015) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022)