Cargando…
Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid
BACKGROUND: The wide adoption of social media in daily life renders it a rich and effective resource for conducting near real-time assessments of consumers’ perceptions of health services. However, its use in these assessments can be challenging because of the vast amount of data and the diversity o...
Autores principales: | Yang, Yuan-Chi, Al-Garadi, Mohammed Ali, Bremer, Whitney, Zhu, Jane M, Grande, David, Sarker, Abeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129876/ https://www.ncbi.nlm.nih.gov/pubmed/33938807 http://dx.doi.org/10.2196/26616 |
Ejemplares similares
-
The Early Detection of Fraudulent COVID-19 Products From Twitter Chatter: Data Set and Baseline Approach Using Anomaly Detection
por: Sarker, Abeed, et al.
Publicado: (2023) -
Automatic gender detection in Twitter profiles for health-related cohort studies
por: Yang, Yuan-Chi, et al.
Publicado: (2021) -
A corpus for mining drug-related knowledge from Twitter chatter: Language models and their utilities
por: Sarker, Abeed, et al.
Publicado: (2016) -
Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource
por: Sarker, Abeed, et al.
Publicado: (2020) -
Natural language model for automatic identification of Intimate Partner Violence reports from Twitter
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2022)