Cargando…

A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1

OBJECTIVE: To identify differentially expressed and clinically significant mRNAs and construct a potential prediction model for metabolic steatohepatitis (MASH). METHOD: We downloaded four microarray datasets, GSE89632, GSE24807, GSE63067, and GSE48452, from the Gene Expression Omnibus database. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Shenling, He, He, Zeng, Yuping, Yang, Lidan, Liu, Zhi, An, Zhenmei, Zhang, Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130015/
https://www.ncbi.nlm.nih.gov/pubmed/34041361
http://dx.doi.org/10.1515/med-2021-0286
_version_ 1783694425922207744
author Liao, Shenling
He, He
Zeng, Yuping
Yang, Lidan
Liu, Zhi
An, Zhenmei
Zhang, Mei
author_facet Liao, Shenling
He, He
Zeng, Yuping
Yang, Lidan
Liu, Zhi
An, Zhenmei
Zhang, Mei
author_sort Liao, Shenling
collection PubMed
description OBJECTIVE: To identify differentially expressed and clinically significant mRNAs and construct a potential prediction model for metabolic steatohepatitis (MASH). METHOD: We downloaded four microarray datasets, GSE89632, GSE24807, GSE63067, and GSE48452, from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis were performed to screen significant genes. Finally, we constructed a nomogram of six hub genes in predicting MASH and assessed it through receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis (DCA). In addition, qRT-PCR was used for relative quantitative detection of RNA in QSG-7011 cells to further verify the expression of the selected mRNA in fatty liver cells. RESULTS: Based on common DEGs and brown and yellow modules, seven hub genes were identified, which were NAMPT, PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. After logistic regression analysis, six hub genes were used to establish the nomogram, which were NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. The area under the ROC of the nomogram was 0.897. The DCA showed that when the threshold probability of MASH was 0–0.8, the prediction model was valuable to GSE48452. In QSG-7011 fatty liver model cells, the relative expression levels of NAMPT, GADD45B, FOSL2, RTP3, RASD1 and RALGDS were lower than the control group. CONCLUSION: We identified seven hub genes NAMPT, PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. The nomogram showed good performance in the prediction of MASH and it had clinical utility in distinguishing MASH from simple steatosis.
format Online
Article
Text
id pubmed-8130015
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher De Gruyter
record_format MEDLINE/PubMed
spelling pubmed-81300152021-05-25 A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1 Liao, Shenling He, He Zeng, Yuping Yang, Lidan Liu, Zhi An, Zhenmei Zhang, Mei Open Med (Wars) Research Article OBJECTIVE: To identify differentially expressed and clinically significant mRNAs and construct a potential prediction model for metabolic steatohepatitis (MASH). METHOD: We downloaded four microarray datasets, GSE89632, GSE24807, GSE63067, and GSE48452, from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis were performed to screen significant genes. Finally, we constructed a nomogram of six hub genes in predicting MASH and assessed it through receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis (DCA). In addition, qRT-PCR was used for relative quantitative detection of RNA in QSG-7011 cells to further verify the expression of the selected mRNA in fatty liver cells. RESULTS: Based on common DEGs and brown and yellow modules, seven hub genes were identified, which were NAMPT, PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. After logistic regression analysis, six hub genes were used to establish the nomogram, which were NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. The area under the ROC of the nomogram was 0.897. The DCA showed that when the threshold probability of MASH was 0–0.8, the prediction model was valuable to GSE48452. In QSG-7011 fatty liver model cells, the relative expression levels of NAMPT, GADD45B, FOSL2, RTP3, RASD1 and RALGDS were lower than the control group. CONCLUSION: We identified seven hub genes NAMPT, PHLDA1, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. The nomogram showed good performance in the prediction of MASH and it had clinical utility in distinguishing MASH from simple steatosis. De Gruyter 2021-05-17 /pmc/articles/PMC8130015/ /pubmed/34041361 http://dx.doi.org/10.1515/med-2021-0286 Text en © 2021 Shenling Liao et al., published by De Gruyter https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 International License.
spellingShingle Research Article
Liao, Shenling
He, He
Zeng, Yuping
Yang, Lidan
Liu, Zhi
An, Zhenmei
Zhang, Mei
A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title_full A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title_fullStr A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title_full_unstemmed A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title_short A nomogram for predicting metabolic steatohepatitis: The combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1
title_sort nomogram for predicting metabolic steatohepatitis: the combination of nampt, ralgds, gadd45b, fosl2, rtp3, and rasd1
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130015/
https://www.ncbi.nlm.nih.gov/pubmed/34041361
http://dx.doi.org/10.1515/med-2021-0286
work_keys_str_mv AT liaoshenling anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT hehe anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT zengyuping anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT yanglidan anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT liuzhi anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT anzhenmei anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT zhangmei anomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT liaoshenling nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT hehe nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT zengyuping nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT yanglidan nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT liuzhi nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT anzhenmei nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1
AT zhangmei nomogramforpredictingmetabolicsteatohepatitisthecombinationofnamptralgdsgadd45bfosl2rtp3andrasd1