Cargando…

Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria

BACKGROUND: Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xiaomin, Ma, Guang, Liu, Chuanyang, Qiu, Xin-yuan, Min, Lu, Kuang, Jingyu, Zhu, Lingyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130110/
https://www.ncbi.nlm.nih.gov/pubmed/34001115
http://dx.doi.org/10.1186/s12934-021-01591-6
Descripción
Sumario:BACKGROUND: Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. RESULTS: Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-d-xylulose 5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. CONCLUSIONS: In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01591-6.