Cargando…
Impact of slice thickness, pixel size, and CT dose on the performance of automatic contouring algorithms
PURPOSE: To investigate the impact of computed tomography (CT) image acquisition and reconstruction parameters, including slice thickness, pixel size, and dose, on automatic contouring algorithms. METHODS: Eleven scans from patients with head‐and‐neck cancer were reconstructed with varying slice thi...
Autores principales: | Huang, Kai, Rhee, Dong Joo, Ger, Rachel, Layman, Rick, Yang, Jinzhong, Cardenas, Carlos E., Court, Laurence E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130223/ https://www.ncbi.nlm.nih.gov/pubmed/33779037 http://dx.doi.org/10.1002/acm2.13207 |
Ejemplares similares
-
Automatic detection of contouring errors using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2019) -
Technical Note: Proof of concept for radiomics‐based quality assurance for computed tomography
por: Branco, Luciano R. F., et al.
Publicado: (2019) -
Optimal slice thickness for cone-beam CT with on-board imager
por: Seet, KYT, et al.
Publicado: (2010) -
CT slice index and thickness: Impact on organ contouring in radiation treatment planning for prostate cancer
por: Berthelet, E., et al.
Publicado: (2003) -
Automatic contouring system for cervical cancer using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2020)