Cargando…
Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing
BACKGROUND: Fractional vegetation cover (FVC) is an important parameter for evaluating crop-growth status. Optical remote-sensing techniques combined with the pixel dichotomy model (PDM) are widely used to estimate cropland FVC with medium to high spatial resolution on the ground. However, PDM-based...
Autores principales: | Yue, Jibo, Guo, Wei, Yang, Guijun, Zhou, Chengquan, Feng, Haikuan, Qiao, Hongbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130311/ https://www.ncbi.nlm.nih.gov/pubmed/34001195 http://dx.doi.org/10.1186/s13007-021-00752-3 |
Ejemplares similares
-
Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives
por: Yang, Guijun, et al.
Publicado: (2017) -
The Use of Unmanned Aerial Vehicles in Remote Sensing Systems †
por: Olejnik, Aleksander, et al.
Publicado: (2020) -
Accurate estimation of fractional vegetation cover for winter wheat by integrated unmanned aerial systems and satellite images
por: Yang, Songlin, et al.
Publicado: (2023) -
Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height
por: Liu, Yang, et al.
Publicado: (2022) -
Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform
por: Zhou, Chengquan, et al.
Publicado: (2019)