Cargando…
A model-agnostic approach for understanding heart failure risk factors
OBJECTIVE: Understanding the risk factors for developing heart failure among patients with type 2 diabetes can contribute to preventing deterioration of quality of life for those persons. Electronic health records (EHR) provide an opportunity to use sophisticated machine learning models to understan...
Autores principales: | Miran, Seyed M., Nelson, Stuart J., Zeng-Treitler, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130447/ https://www.ncbi.nlm.nih.gov/pubmed/34001210 http://dx.doi.org/10.1186/s13104-021-05596-7 |
Ejemplares similares
-
Understanding Demographic Risk Factors for Adverse Outcomes in COVID-19 Patients: Explanation of a Deep Learning Model
por: Shao, Yijun, et al.
Publicado: (2021) -
geneAttribution: trait agnostic identification of candidate genes associated with noncoding variation
por: Wuster, Arthur, et al.
Publicado: (2017) -
An efficient prototype method to identify and correct misspellings in clinical text
por: Workman, T. Elizabeth, et al.
Publicado: (2019) -
Will Artificial Intelligence Translate Big Data Into Improved Medical Care or Be a Source of Confusing Intrusion? A Discussion Between a (Cautious) Physician Informatician and an (Optimistic) Medical Informatics Researcher
por: Zeng-Treitler, Qing, et al.
Publicado: (2019) -
The Bacillus Agnostic
Publicado: (1911)