Cargando…
Optimal Standardized Uptake Value Threshold for Auto contouring of Gross Tumor Volume using Positron Emission Tomography/Computed Tomography in Patients with Operable Nonsmall-Cell Lung Cancer: Comparison with Pathological Tumor Size
PURPOSE: Incorporating (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET/CT) for gross tumor volume (GTV) delineation is challenging due to varying tumor edge based on the set threshold of the standardized uptake value (SUV). This study aims to determine an opt...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8130683/ https://www.ncbi.nlm.nih.gov/pubmed/34040289 http://dx.doi.org/10.4103/ijnm.IJNM_134_20 |
Sumario: | PURPOSE: Incorporating (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET/CT) for gross tumor volume (GTV) delineation is challenging due to varying tumor edge based on the set threshold of the standardized uptake value (SUV). This study aims to determine an optimal SUV threshold that correlates best with the pathological tumor size. MATERIALS AND METHODS: From January 2013 to July 2014, 25 consecutive patients of operable nonsmall-cell lung cancer (NSCLC) who underwent staging(18)F-FDG-PET/CT before surgical resection were included in the test cohort and 12 patients in the validation cohort. GTVs were delineated on the staging PET/CT by automatic delineation using various percentage threshold of maximum SUV (SUVmax) and absolute SUV. The maximum pathological tumor diameter was then matched with the maximum auto-delineated tumor diameter with varying SUV thresholds. First-order linear regression and Bland–Altman plots were used to obtain an optimal SUV threshold for each patient. Three radiation oncologists with varying degrees of experiences also delineated GTVs with the visual aid of PET/CT to assess interobserver variation in delineation. RESULTS: In the test set, the mean optimal percentage threshold for GTV was SUVmax of 35.6%±18.6% and absolute SUV of 4.35 ± 1.7. In the validation set, the mean optimal percentage threshold SUV and absolute SUV were 36.9 ± 16.9 and 4.1 ± 1.6, respectively. After a combined analysis of all 37 patients, the mean optimal threshold was 36% ± 17.9% and 4.27 ± 1.7, respectively. Using Bland–Altman plots, auto-contouring with 40% SUVmax and SUV 4 was in greater agreement with the pathological tumor diameter. CONCLUSION: Automatic GTV delineation on PETCT in NSCLC with percentage threshold SUV of 40% and absolute SUV of 4 correlated best with pathological tumor size. Auto-contouring using these thresholds will increase the precision of radiotherapy contouring of GTV and will save time. |
---|