Cargando…

The inhibitory effect of CTAB on human osteosarcoma through the PI3K/AKT signaling pathway

Osteosarcoma (OS) metastasis and recurrence and multidrug resistance are three major obstacles in the clinic. New highly effective and low toxicity drugs for osteosarcoma are needed. The antitumoral efficacy of cetrimonium bromide (CTAB), a quaternary ammonium compound, is gradually being investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Da, Wacili, Tao, Lin, Zhu, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131084/
https://www.ncbi.nlm.nih.gov/pubmed/34013357
http://dx.doi.org/10.3892/ijo.2021.5222
Descripción
Sumario:Osteosarcoma (OS) metastasis and recurrence and multidrug resistance are three major obstacles in the clinic. New highly effective and low toxicity drugs for osteosarcoma are needed. The antitumoral efficacy of cetrimonium bromide (CTAB), a quaternary ammonium compound, is gradually being investigated. The aim of the present study was to investigate the effects of CTAB on OS cells and the underlying mechanisms. CTAB inhibited the proliferation of osteosarcoma cells in a concentration- and time-dependent manner, resulting in cell cycle arrest in G1 phase. CTAB also suppressed the migration and invasion of HOS and MG63 cells at a low concentration without inhibiting the growth of human osteoblasts. Moreover, CTAB promoted caspase-mediated apoptosis of osteosarcoma cells through the PI3K/AKT cascade, and this effect was accompanied by obvious mitochondrial toxicity. In vivo, CTAB inhibited OS proliferation without inducing organ toxicity. In conclusion, this study reveals that CTAB has an inhibitory effect on OS by suppressing proliferation and metastasis and inducing apoptosis through the PI3K/AKT signaling pathway and identifies CTAB as a potential therapeutic drug.