Cargando…

Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps

OBJECTIVES: To develop a deep learning–based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients. METHODS: For development, 104 pulmonary CT angiogra...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Ju Gang, Witanto, Joseph Nathanael, Park, Sang Joon, Yoo, Seung Jin, Goo, Jin Mo, Yoon, Soon Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131193/
https://www.ncbi.nlm.nih.gov/pubmed/34009411
http://dx.doi.org/10.1007/s00330-021-08036-z
Descripción
Sumario:OBJECTIVES: To develop a deep learning–based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients. METHODS: For development, 104 pulmonary CT angiography scans (49,054 slices) using a dual-source CT were collected, and spatiotemporally matched virtual noncontrast and 50-keV images were generated. Vessel maps were extracted from the 50-keV images. The 3-dimensional U-Net-based DLVS was trained to segment pulmonary vessels (with a vessel map as the output) from virtual noncontrast images (as the input). For external validation, vendor-independent noncontrast CT images (n = 14) and the VESSEL 12 challenge open dataset (n = 3) were used. For each case, 200 points were selected including 20 intra-lesional points, and the probability value for each point was extracted. For clinical validation, we included 281 COPD patients with low-dose noncontrast CTs. The DLVS-calculated volume of vessels with a cross-sectional area < 5 mm(2) (PVV5) and the PVV5 divided by total vessel volume (%PVV5) were measured. RESULTS: DLVS correctly segmented 99.1% of the intravascular points (1,387/1,400) and 93.1% of the extravascular points (1,309/1,400). The areas-under-the receiver-operating characteristic curve (AUROCs) were 0.977 and 0.969 for the two external validation datasets. For the COPD patients, both PPV5 and %PPV5 successfully differentiated severe patients whose FEV1 < 50 (AUROCs; 0.715 and 0.804) and were significantly correlated with the emphysema index (Ps < .05). CONCLUSIONS: DLVS successfully segmented pulmonary vessels on noncontrast chest CT by utilizing spatiotemporally matched 50-keV images from a dual-source CT scanner and showed promising clinical applicability in COPD. KEY POINTS: • We developed a deep learning pulmonary vessel segmentation algorithm using virtual noncontrast images and 50-keV enhanced images produced by a dual-source CT scanner. • Our algorithm successfully segmented vessels on diseased lungs. • Our algorithm showed promising results in assessing the loss of small vessel density in COPD patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-021-08036-z.