Cargando…
Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular feature...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131206/ https://www.ncbi.nlm.nih.gov/pubmed/33390588 http://dx.doi.org/10.1038/s41551-020-00665-x |
_version_ | 1783694670336884736 |
---|---|
author | Simonson, Andrew W. Mongia, Agustey S. Aronson, Matthew R. Alumasa, John N. Chan, Dennis C. Lawanprasert, Atip Howe, Michael D. Bolotsky, Adam Mal, Tapas K. George, Christy Ebrahimi, Aida Baughn, Anthony D. Proctor, Elizabeth A. Keiler, Kenneth C. Medina, Scott H. |
author_facet | Simonson, Andrew W. Mongia, Agustey S. Aronson, Matthew R. Alumasa, John N. Chan, Dennis C. Lawanprasert, Atip Howe, Michael D. Bolotsky, Adam Mal, Tapas K. George, Christy Ebrahimi, Aida Baughn, Anthony D. Proctor, Elizabeth A. Keiler, Kenneth C. Medina, Scott H. |
author_sort | Simonson, Andrew W. |
collection | PubMed |
description | Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides. |
format | Online Article Text |
id | pubmed-8131206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-81312062021-07-04 Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry Simonson, Andrew W. Mongia, Agustey S. Aronson, Matthew R. Alumasa, John N. Chan, Dennis C. Lawanprasert, Atip Howe, Michael D. Bolotsky, Adam Mal, Tapas K. George, Christy Ebrahimi, Aida Baughn, Anthony D. Proctor, Elizabeth A. Keiler, Kenneth C. Medina, Scott H. Nat Biomed Eng Article Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides. 2021-01-04 /pmc/articles/PMC8131206/ /pubmed/33390588 http://dx.doi.org/10.1038/s41551-020-00665-x Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms http://www.nature.com/reprintsReprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . |
spellingShingle | Article Simonson, Andrew W. Mongia, Agustey S. Aronson, Matthew R. Alumasa, John N. Chan, Dennis C. Lawanprasert, Atip Howe, Michael D. Bolotsky, Adam Mal, Tapas K. George, Christy Ebrahimi, Aida Baughn, Anthony D. Proctor, Elizabeth A. Keiler, Kenneth C. Medina, Scott H. Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title | Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title_full | Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title_fullStr | Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title_full_unstemmed | Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title_short | Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
title_sort | pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131206/ https://www.ncbi.nlm.nih.gov/pubmed/33390588 http://dx.doi.org/10.1038/s41551-020-00665-x |
work_keys_str_mv | AT simonsonandreww pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT mongiaagusteys pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT aronsonmatthewr pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT alumasajohnn pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT chandennisc pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT lawanprasertatip pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT howemichaeld pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT bolotskyadam pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT maltapask pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT georgechristy pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT ebrahimiaida pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT baughnanthonyd pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT proctorelizabetha pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT keilerkennethc pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry AT medinascotth pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry |