Cargando…

Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry

Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular feature...

Descripción completa

Detalles Bibliográficos
Autores principales: Simonson, Andrew W., Mongia, Agustey S., Aronson, Matthew R., Alumasa, John N., Chan, Dennis C., Lawanprasert, Atip, Howe, Michael D., Bolotsky, Adam, Mal, Tapas K., George, Christy, Ebrahimi, Aida, Baughn, Anthony D., Proctor, Elizabeth A., Keiler, Kenneth C., Medina, Scott H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131206/
https://www.ncbi.nlm.nih.gov/pubmed/33390588
http://dx.doi.org/10.1038/s41551-020-00665-x
_version_ 1783694670336884736
author Simonson, Andrew W.
Mongia, Agustey S.
Aronson, Matthew R.
Alumasa, John N.
Chan, Dennis C.
Lawanprasert, Atip
Howe, Michael D.
Bolotsky, Adam
Mal, Tapas K.
George, Christy
Ebrahimi, Aida
Baughn, Anthony D.
Proctor, Elizabeth A.
Keiler, Kenneth C.
Medina, Scott H.
author_facet Simonson, Andrew W.
Mongia, Agustey S.
Aronson, Matthew R.
Alumasa, John N.
Chan, Dennis C.
Lawanprasert, Atip
Howe, Michael D.
Bolotsky, Adam
Mal, Tapas K.
George, Christy
Ebrahimi, Aida
Baughn, Anthony D.
Proctor, Elizabeth A.
Keiler, Kenneth C.
Medina, Scott H.
author_sort Simonson, Andrew W.
collection PubMed
description Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.
format Online
Article
Text
id pubmed-8131206
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-81312062021-07-04 Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry Simonson, Andrew W. Mongia, Agustey S. Aronson, Matthew R. Alumasa, John N. Chan, Dennis C. Lawanprasert, Atip Howe, Michael D. Bolotsky, Adam Mal, Tapas K. George, Christy Ebrahimi, Aida Baughn, Anthony D. Proctor, Elizabeth A. Keiler, Kenneth C. Medina, Scott H. Nat Biomed Eng Article Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thus to cure disease without antibiotic-associated dysbiosis. Here, we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen’s channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen’s cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic-acid rich outer membrane of Mycobacterium tuberculosis (Mtb) to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These ‘mycomembrane-templated’ assemblies elicit rapid mycobactericidal activity, and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid Mtb envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides. 2021-01-04 /pmc/articles/PMC8131206/ /pubmed/33390588 http://dx.doi.org/10.1038/s41551-020-00665-x Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms http://www.nature.com/reprintsReprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) .
spellingShingle Article
Simonson, Andrew W.
Mongia, Agustey S.
Aronson, Matthew R.
Alumasa, John N.
Chan, Dennis C.
Lawanprasert, Atip
Howe, Michael D.
Bolotsky, Adam
Mal, Tapas K.
George, Christy
Ebrahimi, Aida
Baughn, Anthony D.
Proctor, Elizabeth A.
Keiler, Kenneth C.
Medina, Scott H.
Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title_full Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title_fullStr Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title_full_unstemmed Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title_short Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
title_sort pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131206/
https://www.ncbi.nlm.nih.gov/pubmed/33390588
http://dx.doi.org/10.1038/s41551-020-00665-x
work_keys_str_mv AT simonsonandreww pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT mongiaagusteys pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT aronsonmatthewr pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT alumasajohnn pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT chandennisc pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT lawanprasertatip pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT howemichaeld pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT bolotskyadam pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT maltapask pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT georgechristy pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT ebrahimiaida pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT baughnanthonyd pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT proctorelizabetha pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT keilerkennethc pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry
AT medinascotth pathogenspecificantimicrobialsengineereddenovothroughmembraneproteinbiomimicry