Cargando…
FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling
In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data t...
Autores principales: | Karunanithy, Gogulan, Hansen, D. Flemming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131344/ https://www.ncbi.nlm.nih.gov/pubmed/33870472 http://dx.doi.org/10.1007/s10858-021-00366-w |
Ejemplares similares
-
Multiquantum Chemical Exchange Saturation Transfer
NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics
of the Guanidinium Group in Arginine Side Chains
por: Karunanithy, Gogulan, et al.
Publicado: (2020) -
Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks
por: Karunanithy, Gogulan, et al.
Publicado: (2022) -
The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy
por: Puglisi, Rita, et al.
Publicado: (2021) -
Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra
por: Hansen, D. Flemming
Publicado: (2019) -
Investigation of Behavior of Forced Degradation of Lidocaine HCl by NMR Spectroscopy and GC-FID Methods: Validation of GC-FID Method for Determination of Related Substance in Pharmaceutical Formulations
por: Kadioglu, Yucel, et al.
Publicado: (2013)