Cargando…

Extract of white sweet potato tuber against TNF-α-induced insulin resistance by activating the PI3K/Akt pathway in C2C12 myotubes

BACKGROUND: White sweet potato (WSP; Ipomoea batatas L. Simon No. 1) has many potential beneficial effects on metabolic control and diabetes-related insulin resistance. The improvement of insulin resistance by WSP tuber extracts on glucose uptake were not investigated in C2C12 myoblast cells. RESULT...

Descripción completa

Detalles Bibliográficos
Autores principales: Shyur, Lie-Fen, Varga, Viola, Chen, Chiao-Ming, Mu, Shu-Chi, Chang, Yu-Chih, Li, Sing-Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131422/
https://www.ncbi.nlm.nih.gov/pubmed/34003397
http://dx.doi.org/10.1186/s40529-021-00315-8
Descripción
Sumario:BACKGROUND: White sweet potato (WSP; Ipomoea batatas L. Simon No. 1) has many potential beneficial effects on metabolic control and diabetes-related insulin resistance. The improvement of insulin resistance by WSP tuber extracts on glucose uptake were not investigated in C2C12 myoblast cells. RESULTS: WSP tuberous ethanol extract (WSP-E) was partitioned with ethyl-acetate and water to obtain ethyl-acetate layer (WSP-EA) and water layer (WSP-EW). The WSP-EA shows the highest total phenolic contents and highest antioxidant activity by Folin-Ciocalteu and (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH) assay, respectively. After low concentration horse serum on differentiation inducement of C2C12 myoblasts into mature myotubes, the cells were treated with TNF-α to induce insulin resistance. WSP-EA and WSP-EW extracts increased the uptake of fluorescence glucose analogue (2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose, 2-NBDG) in a dose-dependent manner as examined by flow cytometry. The WSP-EA enhanced glucose uptake by activation of phosphorylation of IR (pIR), IRS-1 (pIRS-1) and Akt (pAkt) involved in PI3K (phosphatidylinositol 3-kinase)/protein kinase B (Akt) pathway, also upregulated glucose transporter 4 (GLUT4) expression in myotubes. CONCLUSIONS: WSP-EA enhanced the glucose uptake in C2C12 myotubes through upregulating the PI3K/Akt pathway. The in vitro data reveal that WSP tuber extracts has potential applications to improve insulin resistance in diabetes.