Cargando…
Visual motion integration of bidirectional transparent motion in mouse opto-locomotor reflexes
Visual motion perception depends on readout of direction selective sensors. We investigated in mice whether the response to bidirectional transparent motion, activating oppositely tuned sensors, reflects integration (averaging) or winner-take-all (mutual inhibition) mechanisms. We measured whole bod...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131598/ https://www.ncbi.nlm.nih.gov/pubmed/34006985 http://dx.doi.org/10.1038/s41598-021-89974-y |
Sumario: | Visual motion perception depends on readout of direction selective sensors. We investigated in mice whether the response to bidirectional transparent motion, activating oppositely tuned sensors, reflects integration (averaging) or winner-take-all (mutual inhibition) mechanisms. We measured whole body opto-locomotor reflexes (OLRs) to bidirectional oppositely moving random dot patterns (leftward and rightward) and compared the response to predictions based on responses to unidirectional motion (leftward or rightward). In addition, responses were compared to stimulation with stationary patterns. When comparing OLRs to bidirectional and unidirectional conditions, we found that the OLR to bidirectional motion best fits an averaging model. These results reflect integration mechanisms in neural responses to contradicting sensory evidence as has been documented for other sensory and motor domains. |
---|