Cargando…
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis
Integrative analysis of multi-omics data can elucidate valuable insights into complex molecular mechanisms for various diseases. However, due to their different modalities and high dimension, utilizing and integrating different types of omics data suffers from great challenges. There is an urgent ne...
Autores principales: | Zhao, Lianhe, Dong, Qiongye, Luo, Chunlong, Wu, Yang, Bu, Dechao, Qi, Xiaoning, Luo, Yufan, Zhao, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131983/ https://www.ncbi.nlm.nih.gov/pubmed/34093987 http://dx.doi.org/10.1016/j.csbj.2021.04.067 |
Ejemplares similares
-
Omixer: multivariate and reproducible sample randomization to proactively counter batch effects in omics studies
por: Sinke, Lucy, et al.
Publicado: (2021) -
Multi-modality artificial intelligence in digital pathology
por: Qiao, Yixuan, et al.
Publicado: (2022) -
AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA
por: Jiang, Lindong, et al.
Publicado: (2023) -
d-Omix: a mixer of generic protein domain analysis tools
por: Wichadakul, Duangdao, et al.
Publicado: (2009) -
OmixLitMiner: A Bioinformatics Tool for Prioritizing Biological Leads from ‘Omics Data Using Literature Retrieval and Data Mining
por: Steffen, Pascal, et al.
Publicado: (2020)