Cargando…
Characterization of a Novel Caveolin Modulator That Reduces Vascular Permeability and Ocular Inflammation
PURPOSE: Caveolin (Cav) regulates various aspect of endothelial cell signaling and cell-permeable peptides (CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus, the goal of the present study was to identify a novel CPP that improves delivery of a truncated Cav modu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132009/ https://www.ncbi.nlm.nih.gov/pubmed/34111267 http://dx.doi.org/10.1167/tvst.10.6.21 |
Sumario: | PURPOSE: Caveolin (Cav) regulates various aspect of endothelial cell signaling and cell-permeable peptides (CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus, the goal of the present study was to identify a novel CPP that improves delivery of a truncated Cav modulator in vitro and in vivo. METHODS: Phage display technology was used to identify a small peptide (RRPPR) that was internalized into endothelial cells. Fusions of Cav with the peptide were compared to existing molecules in three distinct assays, vascular endothelial growth factor-A (VEGF) induced nitric oxide (NO) release, VEGF induced vascular leakage, and in a model of immune mediated uveitis. RESULTS: RRPPR was internalized efficiently and was potent in blocking NO release. Fusing RRPPR with a minimal Cav inhibitory domain (CVX51401) dose-dependently blocked NO release, VEGF induced permeability, and retinal damage in a model of uveitis. CONCLUSIONS: CVX51401 is a novel Cav modulator that reduces VEGF and immune mediated inflammation. TRANSLATIONAL RELEVANCE: CVX51401 is an optimized Cav modulator that reduces vascular permeability and ocular inflammation that is poised for clinical development. |
---|