Cargando…
A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132125/ https://www.ncbi.nlm.nih.gov/pubmed/34027392 http://dx.doi.org/10.1016/j.xplc.2021.100178 |
Sumario: | Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells. |
---|