Cargando…

A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer

Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 resea...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Xun, Wang, Xin, Cui, Zifeng, Liu, Jia, Huang, Xiaoyuan, Shi, Caixia, Zhang, Min, Liu, Ting, Du, Xiaofang, Li, Rui, Huang, Lei, Gong, Danni, Tian, Rui, Cao, Chen, Jin, Ping, Zeng, Zhen, Pan, Guangxin, Xia, Meng, Zhang, Hongfeng, Luo, Bo, Xie, Yonghui, Li, Xiaoming, Li, Tianye, Wu, Jun, Zhang, Qinghua, Chen, Gang, Hu, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132153/
https://www.ncbi.nlm.nih.gov/pubmed/34026427
http://dx.doi.org/10.1002/advs.202001978
_version_ 1783694861110607872
author Tian, Xun
Wang, Xin
Cui, Zifeng
Liu, Jia
Huang, Xiaoyuan
Shi, Caixia
Zhang, Min
Liu, Ting
Du, Xiaofang
Li, Rui
Huang, Lei
Gong, Danni
Tian, Rui
Cao, Chen
Jin, Ping
Zeng, Zhen
Pan, Guangxin
Xia, Meng
Zhang, Hongfeng
Luo, Bo
Xie, Yonghui
Li, Xiaoming
Li, Tianye
Wu, Jun
Zhang, Qinghua
Chen, Gang
Hu, Zheng
author_facet Tian, Xun
Wang, Xin
Cui, Zifeng
Liu, Jia
Huang, Xiaoyuan
Shi, Caixia
Zhang, Min
Liu, Ting
Du, Xiaofang
Li, Rui
Huang, Lei
Gong, Danni
Tian, Rui
Cao, Chen
Jin, Ping
Zeng, Zhen
Pan, Guangxin
Xia, Meng
Zhang, Hongfeng
Luo, Bo
Xie, Yonghui
Li, Xiaoming
Li, Tianye
Wu, Jun
Zhang, Qinghua
Chen, Gang
Hu, Zheng
author_sort Tian, Xun
collection PubMed
description Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient‐specific somatic mutations led to NACT non‐responsiveness are identified by whole‐exome sequencing. Next, CRISPR/Cas9‐based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15‐gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69–0.91). Furthermore, the 15‐gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55–32.86; p = 2.8 × 10(−5)) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04–74.40; p = 1.23 × 10(−4)) in the validation set. In conclusion, the 15‐gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer.
format Online
Article
Text
id pubmed-8132153
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-81321532021-05-21 A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer Tian, Xun Wang, Xin Cui, Zifeng Liu, Jia Huang, Xiaoyuan Shi, Caixia Zhang, Min Liu, Ting Du, Xiaofang Li, Rui Huang, Lei Gong, Danni Tian, Rui Cao, Chen Jin, Ping Zeng, Zhen Pan, Guangxin Xia, Meng Zhang, Hongfeng Luo, Bo Xie, Yonghui Li, Xiaoming Li, Tianye Wu, Jun Zhang, Qinghua Chen, Gang Hu, Zheng Adv Sci (Weinh) Full Papers Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient‐specific somatic mutations led to NACT non‐responsiveness are identified by whole‐exome sequencing. Next, CRISPR/Cas9‐based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15‐gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69–0.91). Furthermore, the 15‐gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55–32.86; p = 2.8 × 10(−5)) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04–74.40; p = 1.23 × 10(−4)) in the validation set. In conclusion, the 15‐gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer. John Wiley and Sons Inc. 2021-03-18 /pmc/articles/PMC8132153/ /pubmed/34026427 http://dx.doi.org/10.1002/advs.202001978 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Tian, Xun
Wang, Xin
Cui, Zifeng
Liu, Jia
Huang, Xiaoyuan
Shi, Caixia
Zhang, Min
Liu, Ting
Du, Xiaofang
Li, Rui
Huang, Lei
Gong, Danni
Tian, Rui
Cao, Chen
Jin, Ping
Zeng, Zhen
Pan, Guangxin
Xia, Meng
Zhang, Hongfeng
Luo, Bo
Xie, Yonghui
Li, Xiaoming
Li, Tianye
Wu, Jun
Zhang, Qinghua
Chen, Gang
Hu, Zheng
A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title_full A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title_fullStr A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title_full_unstemmed A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title_short A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
title_sort fifteen‐gene classifier to predict neoadjuvant chemotherapy responses in patients with stage ib to iib squamous cervical cancer
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132153/
https://www.ncbi.nlm.nih.gov/pubmed/34026427
http://dx.doi.org/10.1002/advs.202001978
work_keys_str_mv AT tianxun afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT wangxin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT cuizifeng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT liujia afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huangxiaoyuan afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT shicaixia afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhangmin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT liuting afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT duxiaofang afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT lirui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huanglei afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT gongdanni afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT tianrui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT caochen afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT jinping afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zengzhen afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT panguangxin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT xiameng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhanghongfeng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT luobo afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT xieyonghui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT lixiaoming afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT litianye afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT wujun afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhangqinghua afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT chengang afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huzheng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT tianxun fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT wangxin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT cuizifeng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT liujia fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huangxiaoyuan fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT shicaixia fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhangmin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT liuting fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT duxiaofang fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT lirui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huanglei fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT gongdanni fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT tianrui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT caochen fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT jinping fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zengzhen fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT panguangxin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT xiameng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhanghongfeng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT luobo fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT xieyonghui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT lixiaoming fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT litianye fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT wujun fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT zhangqinghua fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT chengang fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer
AT huzheng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer