Cargando…
A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer
Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 resea...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132153/ https://www.ncbi.nlm.nih.gov/pubmed/34026427 http://dx.doi.org/10.1002/advs.202001978 |
_version_ | 1783694861110607872 |
---|---|
author | Tian, Xun Wang, Xin Cui, Zifeng Liu, Jia Huang, Xiaoyuan Shi, Caixia Zhang, Min Liu, Ting Du, Xiaofang Li, Rui Huang, Lei Gong, Danni Tian, Rui Cao, Chen Jin, Ping Zeng, Zhen Pan, Guangxin Xia, Meng Zhang, Hongfeng Luo, Bo Xie, Yonghui Li, Xiaoming Li, Tianye Wu, Jun Zhang, Qinghua Chen, Gang Hu, Zheng |
author_facet | Tian, Xun Wang, Xin Cui, Zifeng Liu, Jia Huang, Xiaoyuan Shi, Caixia Zhang, Min Liu, Ting Du, Xiaofang Li, Rui Huang, Lei Gong, Danni Tian, Rui Cao, Chen Jin, Ping Zeng, Zhen Pan, Guangxin Xia, Meng Zhang, Hongfeng Luo, Bo Xie, Yonghui Li, Xiaoming Li, Tianye Wu, Jun Zhang, Qinghua Chen, Gang Hu, Zheng |
author_sort | Tian, Xun |
collection | PubMed |
description | Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient‐specific somatic mutations led to NACT non‐responsiveness are identified by whole‐exome sequencing. Next, CRISPR/Cas9‐based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15‐gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69–0.91). Furthermore, the 15‐gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55–32.86; p = 2.8 × 10(−5)) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04–74.40; p = 1.23 × 10(−4)) in the validation set. In conclusion, the 15‐gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer. |
format | Online Article Text |
id | pubmed-8132153 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81321532021-05-21 A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer Tian, Xun Wang, Xin Cui, Zifeng Liu, Jia Huang, Xiaoyuan Shi, Caixia Zhang, Min Liu, Ting Du, Xiaofang Li, Rui Huang, Lei Gong, Danni Tian, Rui Cao, Chen Jin, Ping Zeng, Zhen Pan, Guangxin Xia, Meng Zhang, Hongfeng Luo, Bo Xie, Yonghui Li, Xiaoming Li, Tianye Wu, Jun Zhang, Qinghua Chen, Gang Hu, Zheng Adv Sci (Weinh) Full Papers Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15–34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB‐IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient‐specific somatic mutations led to NACT non‐responsiveness are identified by whole‐exome sequencing. Next, CRISPR/Cas9‐based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15‐gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69–0.91). Furthermore, the 15‐gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55–32.86; p = 2.8 × 10(−5)) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04–74.40; p = 1.23 × 10(−4)) in the validation set. In conclusion, the 15‐gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer. John Wiley and Sons Inc. 2021-03-18 /pmc/articles/PMC8132153/ /pubmed/34026427 http://dx.doi.org/10.1002/advs.202001978 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Tian, Xun Wang, Xin Cui, Zifeng Liu, Jia Huang, Xiaoyuan Shi, Caixia Zhang, Min Liu, Ting Du, Xiaofang Li, Rui Huang, Lei Gong, Danni Tian, Rui Cao, Chen Jin, Ping Zeng, Zhen Pan, Guangxin Xia, Meng Zhang, Hongfeng Luo, Bo Xie, Yonghui Li, Xiaoming Li, Tianye Wu, Jun Zhang, Qinghua Chen, Gang Hu, Zheng A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title | A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title_full | A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title_fullStr | A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title_full_unstemmed | A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title_short | A Fifteen‐Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer |
title_sort | fifteen‐gene classifier to predict neoadjuvant chemotherapy responses in patients with stage ib to iib squamous cervical cancer |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132153/ https://www.ncbi.nlm.nih.gov/pubmed/34026427 http://dx.doi.org/10.1002/advs.202001978 |
work_keys_str_mv | AT tianxun afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT wangxin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT cuizifeng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT liujia afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huangxiaoyuan afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT shicaixia afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhangmin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT liuting afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT duxiaofang afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT lirui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huanglei afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT gongdanni afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT tianrui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT caochen afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT jinping afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zengzhen afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT panguangxin afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT xiameng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhanghongfeng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT luobo afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT xieyonghui afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT lixiaoming afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT litianye afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT wujun afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhangqinghua afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT chengang afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huzheng afifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT tianxun fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT wangxin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT cuizifeng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT liujia fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huangxiaoyuan fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT shicaixia fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhangmin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT liuting fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT duxiaofang fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT lirui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huanglei fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT gongdanni fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT tianrui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT caochen fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT jinping fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zengzhen fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT panguangxin fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT xiameng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhanghongfeng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT luobo fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT xieyonghui fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT lixiaoming fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT litianye fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT wujun fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT zhangqinghua fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT chengang fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer AT huzheng fifteengeneclassifiertopredictneoadjuvantchemotherapyresponsesinpatientswithstageibtoiibsquamouscervicalcancer |