Cargando…

Advances on Graphyne‐Family Members for Superior Photocatalytic Behavior

Graphyne (GY) and graphdiyne (GDY) have been employed in photocatalysis since 2012, presenting intriguing electronic and optical properties, such as high electron mobility and intrinsic bandgap due to their high π‐conjugated structures. Authors are reporting the enhanced photocatalytic efficiency of...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres‐Pinto, André, Silva, Cláudia G., Faria, Joaquim L., Silva, Adrián M. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132154/
https://www.ncbi.nlm.nih.gov/pubmed/34026446
http://dx.doi.org/10.1002/advs.202003900
Descripción
Sumario:Graphyne (GY) and graphdiyne (GDY) have been employed in photocatalysis since 2012, presenting intriguing electronic and optical properties, such as high electron mobility and intrinsic bandgap due to their high π‐conjugated structures. Authors are reporting the enhanced photocatalytic efficiency of these carbon allotropes when combined with different metal oxides or other carbon materials. However, the synthesis of graphyne‐family members (GFMs) is still very recent, and not much is known about the true potential of these photocatalytic materials. In this review article, the implications of different synthesis routes on the structural features and photocatalytic properties of these materials are elucidated. The application of GFMs in the nicotinamide adenine dinucleotide (NADH) regeneration, hydrogen and oxygen evolution, and carbon dioxide reduction is discussed, as well as in the degradation of pollutants and bacteria inactivation in water and wastewater treatment.