Cargando…
A risk prediction model of gene signatures in ovarian cancer through bagging of GA-XGBoost models
INTRODUCTION: Ovarian cancer (OC) is one of the most frequent gynecologic cancers among women, and high-accuracy risk prediction techniques are essential to effectively select the best intervention strategies and clinical management for OC patients at different risk levels. Current risk prediction m...
Autores principales: | Hsiao, Yi-Wen, Tao, Chun-Liang, Chuang, Eric Y., Lu, Tzu-Pin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132202/ https://www.ncbi.nlm.nih.gov/pubmed/34026291 http://dx.doi.org/10.1016/j.jare.2020.11.006 |
Ejemplares similares
-
CS-GA-XGBoost-Based Model for a Radio-Frequency Power Amplifier under Different Temperatures
por: Wang, Jiayi, et al.
Publicado: (2023) -
Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost and Logistic Regression
por: Xu, Yixian, et al.
Publicado: (2022) -
Preliminary prediction of semen quality based on modifiable lifestyle factors by using the XGBoost algorithm
por: Zhou, Mingjuan, et al.
Publicado: (2022) -
Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost
por: Wang, Xingchen, et al.
Publicado: (2022) -
Hub Genes Identification, Small Molecule Compounds Prediction for Atrial Fibrillation and Diagnostic Model Construction Based on XGBoost Algorithm
por: Yang, Lingzhi, et al.
Publicado: (2022)